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ABSTRACT 
Self-assembling phenomena are ubiquitous in nature and the understanding of the principles 

behind them is critical for designing a new generation of materials. The work in this thesis has 

evolved from the study of dipeptides self-assembling into crystals to higher complex 

oligopeptides that self-assemble into hydrogels. 

The first part of this work focused on the dipeptide leucyl-serine, which is known to self-

assemble into a crystalline structure with hydrophobic channels. We exploited its unique crystal 

packing to determine transport diffusivities of CO2, CH4, N2, O2, and Ar and study the influence 

of several parameters such as crystal length, temperature, pore loading and molecular size of the 

guest molecules. We were able to show that the mass transport in LS crystals is fast, in the 

upper end of the values reported for zeolites. We argue that the low tortuosity of channels and 

the uniformity of chemical character are responsible for the high mass transport measured. 

In a second part of this thesis we envisaged the production of an oligopeptide capable of self-

assembling into a hydrogel. The goal was to develop a material with enhanced therapeutic 

action for application in a wound dressing. An antimicrobial peptide was selected by virtue of 

its chemical properties, which we considered adequate to allow gelification to be triggered by a 

pH shift. The peptide was chemically functionalized to incorporate an NO donor moiety, which 

putatively releases NO in physiological conditions. NO is a free radical which has been 

implicated in several wound healing mechanisms. The resulting functionalized peptide, Fmoc-

PXG/NO, was evaluated for its antimicrobial activity. The compound revealed an initial 

increased bacterial killing activity when compared with the unmodified peptide (Fmoc-PXG), 

although this effect was reversed with time. We debate on the possible effects of an initial 

release of NO from the compound, as an explanation for the early positive bactericidal results 

achieved.  

In addition, the effect of Fmoc-PXG/NO on collagen production, by fibroblasts, was assessed, 

as a simplistic model for wound healing. Fibroblasts exposed to the NO releasing compound 

revealed an increased collagen production when compared with control peptide (Fmoc-PXG). 

Although the chemical characterization of the developed compound failed to provide concrete 

evidence on the production of the NO donor moiety intended, it is undeniable that some 

promising effects were achieved. We are confident that the overall results of this thesis will 

inspire others to pursue research on the field of peptide self-assembling materials. 
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RESUMO 
A auto-associação, ou self-assembly, é um fenómeno omnipresente na natureza e que poderá 

estar na base da criação de uma nova geração de materiais. Para tal, é fundamental adquirir uma 

maior compreensão dos princípios que governam este fenómeno.  

O trabalho desta tese focou-se no estudo de diversas facetas da auto-associação de péptidos para 

desenvolvimento de novos materiais e respectivas aplicações. Como ponto de partida, estudou-

se a auto-associação de dipéptidos hidrofóbicos que dão origem a cristais. Posteriormente, o 

estudo evoluiu no sentido de promover a auto-associação de oligopéptidos mais complexos, 

originando géis. 

Assim, numa primeira fase, estudou-se o dipéptido Leucil-serina (LS), reconhecido pela sua 

auto-associação em estruturas cristalinas, dando origem a canais hidrofóbicos. Aproveitando os 

tubos de dimensões nanométricas formados pelos cristais de LS, levou-se a cabo um estudo para 

a determinação experimental das difusividades de transporte de CO2, CH4, N2, O2, e Ar ao longo 

desses canais. Estudou-se igualmente a influência de vários parâmetros tais como o 

comprimento do cristal, a temperatura, a carga de poro e a dimensão das moléculas gasosas. Foi 

possível demonstrar que o transporte de massa de cristais LS é rápido, equiparado aos valores 

da gama superior publicados para transporte em zeólitos. A baixa tortuosidade dos canais e a 

uniformidade de carácter químico na sua superfície interior poderão ser alguns dos aspectos 

responsáveis pelo elevado transporte de massa obtido. 

Numa segunda parte desta tese, produziu-se um hidrogel a partir da auto-associação de um 

oligopéptido. O objectivo passava pelo desenvolvimento de um material com acção terapêutica 

com vista à aplicação no tratamento de feridas crónicas. Seleccionou-se um péptido 

antimicrobiano, não só por minimizar contaminações microbianas na ferida, mas também 

devido às suas propriedades químicas, que se considerou serem as adequadas para permitir que 

a gelificação decorresse como fruto de uma mudança de pH.  

O óxido nítrico (NO) é um radical livre que tem sido implicado em vários mecanismos de 

cicatrização de feridas; por isso, funcionalizou-se quimicamente o péptido, por forma a 

incorporar um grupo funcional capaz de libertar NO em condições fisiológicas com vista a 

optimizar a acção terapêutica do material desenvolvido.  

O péptido funcionalizado, Fmoc-PXG/NO, foi avaliado quanto à sua actividade antimicrobiana 

através da realização de ensaios de susceptibilidade e geração de curvas tempo-morte (time-kill 

curves). No geral, este composto apresentou uma menor actividade contra o microorganismo 

estudado, Escherechia Coli, relativamente ao péptido parental. No entanto, nos momentos 

iniciais de exposição das células ao composto estudado, verificou-se um maior efeito bactericida, 
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relativamente ao péptido parental, embora este resultado fosse revertido com o tempo. Uma 

libertação inicial de NO, conhecido por actuar como agente antimicrobiano, poderá estar na 

base dos efeitos observados.  

Avaliou-se igualmente o efeito de Fmoc-PXG/NO na produção de colagénio por fibroblastos, 

sendo que os fibroblastos expostos ao composto revelaram um aumento da acumulação de 

colagénio em comparação com o controlo. Este resultado é indicativo de que a sua aplicação 

tópica poderá optimizar o processo de cicatrização. 

Embora a caracterização química do composto desenvolvido não tenha resultado em provas 

concretas sobre a produção do dador de NO pretendido, é inegável que alguns efeitos 

promissores foram alcançados. Estamos confiantes de que os resultados globais desta tese irão 

inspirar outros a perseguir estudos no campo de materiais baseados na auto-associação de 

péptidos. 

  



www.manaraa.com

5 
 

LIST OF FIGURES 

Figure 1. Scheme illustrating top down versus bottom up manufacturing processes. The top-down 
process consists on the patterning of assemblies whereas the bottom-up approach is based 
on the interaction of simple building blocks to form a well-ordered assembly by means of 
molecular recognition and self-assembly. Reproduced from Gazit [3] with the permission of 
the Royal Society of Chemistry. .......................................................................................... 15 

Figure 2. Illustration of design principle underlying the DNA brick structures. The authors compare 
their design with LEGO® bricks. (A) A single stranded DNA with 32 nucleotides as the 
building block. (B) Each two-brick architectures assemble via hybridization of two 
complementary assemblies. Figure adapted from Ke et al. [7] with the permission of The 
American Association for the Advancement of Science. ..................................................... 16 

Figure 3. Amino acids with distinct physical and chemical properties promote the formation of 
particular types of interactions. A schematic representation of the interactions between 
different classes of natural amino acids is presented. Reproduced from Mart et al. [14] with 
the permission of the Royal Society of Chemistry. .............................................................. 18 

Figure 4. Representation of three antiparallel β-strands, forming a β-sheet, which are stabilized by 
hydrogen bonds, on the left of the image, and an α-helix, on the right. The secondary 
structures depicted were singled out from the enzyme Molinate Hydrolase with the author’s 
approval.[17] ........................................................................................................................ 19 

Figure 5. Self-assembly of peptides may lead to the formations of different structure, such as fibers, 
tubes, spheres and sheets. Figure from Zelzer et al. [18] with the permission of the Royal 
Society of Chemistry. ........................................................................................................... 20 

Figure 6. Depiction of nanotube assembly from cyclic D,L-peptides. On the left, the peptide planar 
ring formed by the alternating L and D-amino acid, which self-assembles by stacking each 
ring on top of each other leading to cylinder-like structure, on the right. Figure from Bong 
et al.[21] ............................................................................................................................... 25 

Figure 7. Representation of the chemical structure of the 10-residue peptide subunit, shown on the left, 
which self-assembles into a tubular transmembrane channel structure within a lipid bilayer 
membrane, represented on the right. Adapted with permission from Granja et al.[22] 
Copyright 1994 American Chemical Society....................................................................... 26 

Figure 8. The matrix on the top-left, illustrates the type of crystalline structure obtained by self-
assembly of the dipeptides formed by the combination of the two residues listed. 
Particularly interesting are the tubular structures with inner tubes that are either hydrophilic, 
in blue circles, or hydrophobic, in orange. Reprinted with permission from Görbitz et 
al.[24]. Copyright 2007 John Wiley & Sons, Inc. ................................................................ 27 

Figure 9. (A)  AV (left) and VA (right) dipeptide molecules assemble forming a channel (van der 
Waals dimensions). (B) Sorption isotherms (298 K) of Xe in AV (solid circles) and VA 

(open circles). Θ is the Xe/dipeptide molar ratio. Adapted with permission from Soldatov et 
al.[30] Copyright 2004 John Wiley & Sons, Inc. ................................................................. 28 



www.manaraa.com

6 
 

Figure 10. (A) Chemical structures of AV, VA, IV and VI (on the top). Crystal structure of AV 
showing the open hydrophobic channel of 5 Å (on the bottom). (B) Adsorption isotherms 
(isoT) of CO2 (full symbol) and CH4 (open symbol) at 195 K for AV and VA. (C) 
Adsorption isoT of CO2  and CH4  in IV at 195 K. Adapted from Comotti et al. [31] with 
permission of The Royal Society of Chemistry. .................................................................. 29 

Figure 11. Adsorption Isotherms of Ar (circles), O2 (triangles) and N2 (diamonds) for each material, at 
20ºC. The graphs are organized showing the dipeptides with wider pores on the bottom and 
narrower pores on the top. Reproduced from Afonso et al. [32] with permission of The 
Royal Society of Chemistry. ................................................................................................ 30 

Figure 12. Structural formula (on top) and crystal structure (on the bottom), of the three dipeptides 
studied. Reprinted with permission from Afonso et al. [33] Copyright 2010 John Wiley & 
Sons, Inc............................................................................................................................... 31 

Figure 13. Crystal pore topography of the studied dipeptides as determined with a 2.6 Å probe. 
Reprinted with permission from Afonso et al. [33] Copyright 2010 John Wiley & Sons, Inc.
 ............................................................................................................................................. 31 

Figure 14. Photograph of the high pressure X-ray data collection apparatus. The crystal is mounted in a 
capillary and attached to a miniature valve. ......................................................................... 32 

Figure 15. Crystal structure of AA with O2 viewed along the c axis (left) and along the b axis (right). O 
atoms are coloured in red and C atoms in grey. Reprinted with permission from Afonso et 
al. [33] Copyright 2010 John Wiley & Sons, Inc. ................................................................ 33 

Figure 16. (a) Structure of  (1) [Zn(Gly-Asp)]·H2O  and  (2) [Co(Gly-Asp)]·H2O, (b) Coordination 
modes of Zn2+ ions around the dipeptide GD in compound (1) and coordination modes of 
Co2+ ions around the dipeptide GD in compound (2). Zn dark blue, Co violet, O red, C grey, 
N blue, H white. [38] ........................................................................................................... 34 

Figure 17. Schematic representation of the apparatus used for collection of adsorption isotherms. The 
instruments are placed in a controlled temperature environment. ........................................ 40 

Figure 18. Schematic representation of the setup used for single-crystal diffusion experiments. A 
crystal is carefully glued to a glass capillary and connected to a feed pressure chamber. ... 40 

Figure 19. Optical microscope photograph of LS crystals (left), with dimension bar indicative of 200 

µm, and a scanning electron microscope image emphasising their hexagonal shape (right).
 ............................................................................................................................................. 41 

Figure 20. Adsorption equilibrium isotherms at 293.15 K expressed as the number of guest molecules 
per nm of LS nanochannels. ................................................................................................. 42 

Figure 21. LS crystals formed on the drop growing in different directions (left). Crystals are collected 
from the drop and placed on a glass microscope slide allowing their separation and 
facilitating the process of attaching a single crystal into a glass capillary (right). ............... 42 

Figure 22. Transport diffusivities of light gases in Leu–Ser crystals. Symbols as in Figure 20. ........... 43 

Figure 23. Effect of the crystal length on the transport diffusivities. ..................................................... 44 

Figure 24. Effect of the pore loading on the transport diffusivities. ...................................................... 44 



www.manaraa.com

7 
 

Figure 25. Effect of temperature on the transport diffusivities. ............................................................. 45 

Figure 26. Scheme of the experimental setup used for the single-crystal permeation experiments. ...... 50 

Figure 27. Crystal structure of ice Ih at 150 K viewed along the c-axis. Hydrogen atoms are not shown.
 ............................................................................................................................................. 51 

Figure 28. Feed pressure drop normalized by the pressure gradient across the ice crystal. ................... 52 

Figure 29. Temperature effect of the ice Ih permeability towards helium. Pressure drop in the feed gas 
chamber. ............................................................................................................................... 52 

Figure 30. Ice Ih selectivity of argon, methane, nitrogen, oxygen and hydrogen, relative to helium. .... 53 

Figure 31. Ice Ih hexagonal ring dimensions at (a) 150 K; (b) 195 K; and (c) 240 K. ........................... 54 

Figure 32. Thermal ellipsoids of the oxygen atoms of ice Ih crystal structures formed inside 0.1 mm 
capillaries at 150 K, 195 K and 240 K (from light to dark grey respectively). The three 
ellipsoids are shown at the same probability level. .............................................................. 55 

Figure 33. Schematic representation of a two-stranded coiled coil viewed from the top. Hydrophobic 
interactions take place within the core residues (a and d) whereas electrostatic interactions 
occur between proximal residues (e and g). ......................................................................... 63 

Figure 34. Scheme representing a peptide amphiphile (PA) and the basic design principles underlying 
its construction. (A) Chemical structure of the peptide amphiphile with depiction of each 
structural region. (B) Molecular model of the PA. (C) Self-assembly of PA molecules leads 
to a cylindrical micelle. Reprinted from Hartgerink with AAAS permission[122] ............. 68 

Figure 35. Structural formulae of Fmoc (F), pyrene (P) and naftalene (N) and spiropyran (S). ........... 70 

Figure 36. N-Diazeniumdiolate (NONOate) structural formula where the nucleophile is a secondary 
amine. In the case of primary amines one of the R should be a hydrogen atom. ................. 75 

Figure 37. Griess reaction scheme. Sulfanilic acid reacts with nitrite to form a diazonium salt 
intermediate that then reacts with N-(1-napthyl)ethylenediamine to form an azo dye with a 
peak absorbance at 548 nm. ................................................................................................. 81 

Figure 38. Chromatogram of a purified Fmoc-PXG, resulting in a 99.7% HPLC purity. To perform 
these analyses, a 15 cm long C18 silica column was used with a linear gradient elution of 0 
to 100% of acetonitrile in an aqueous solution with 0.05% TFA. Elution ran for 30 minutes 
at 1 ml.min-1 flow-rate, and detection was made at a wavelength of 220 nm. ..................... 85 

Figure 39. Chromatogram of a purified PXG, resulting in a 96.6% HPLC purity. To perform these 
analyses, a 15 cm long C18 silica column was used with a linear gradient elution of 0 to 
100% of acetonitrile in an aqueous solution with 0.05% TFA. Elution ran for 30 minutes at 
1 ml.min-1 flow-rate, and detection was made at a wavelength of 220 nm. ......................... 85 

Figure 40. Mass spectrum of Fmoc-PXG obtained by electrospray ionization (positive mode), in a 
quadrupole ion trap mass spectrometer, confirming the molecular mass expected for Fmoc-
PXG, detected as di- (P/2), tri- (P/3) and tetraprotonated (P/4) cationic adducts of the target 
peptide. ................................................................................................................................. 86 



www.manaraa.com

8 
 

Figure 41. Mass spectrum of PXG obtained by electrospray ionization, in a quadrupole ion trap mass 
spectrometer, confirming the molecular mass expected for PXG detected as di- (P/2), tri- 
(P/3), tetra- (P/4) and pentaprotonated (P/5) cationic adducts of the target peptide. ........... 86 

Figure 42. Self-assembly of Fmoc-PXG leads to a self-standing translucent hydrogel, on the right, 
whereas PXG, under the same conditions results in no macroscopic signs of self-assembly 
and gel formation. ................................................................................................................ 87 

Figure 43. Amino acid sequence of pexiganan schematically representing its relative hydrophobicites. 
Hydrophilic residues are highlighted on top (blue) and hydrophobic residues are 
represented on the bottom (orange) with longer rectangles characterizing the more 
hydrophobic residues. Dark orange depicts the aromatic group present, phenylalanine. ..... 87 

Figure 44. Calibration curve of the ninhydrin assay, obtained with glycine solutions at concentrations 

that ranged from 10 to 200 µM. Error bars are the result of three independent experiments. 
(R square equals 0.997). ....................................................................................................... 88 

Figure 45. Calibration curve for nitric quantitation via Griess assay, obtained with sodium nitrite 

standard solutions at concentrations that ranged from 1 to 100 µM. Absorbance was 
measured at wavelength 548 nm. Error bars are the result of three independent experiments. 
(R square equals 0.997). ....................................................................................................... 89 

Figure 46. Cumulative nitrite release profile of a 100 µM Fmoc-PXG/NO solution quantified via 

Griess reaction assay. The solution was produced from reaction of a 30 µM Fmoc-PXG 
solution with NO(g) and resulted in a 60% functionalization. ............................................. 90 

Figure 47. Cumulative nitrite release profile of a 125 µM Fmoc-PXG/NO solution quantified via 

Griess reaction assay. The solution was produced from reaction of a 400 µM Fmoc-PXG 
solution with NO(g) and resulted in a 14% functionalization. ............................................. 91 

Figure 48. Dose response curves were generated for Fmoc-PXG and Fmoc-PXG/NO from a single 
experiment. Each point results from the average of triplicate samples.    ............................ 93 

Figure 49. Time-Kill plots for different concentrations of peptide with filled and dashed lines 
representing Fmoc-PXG and Fmoc-PXG/NO data respectively. The grey squares represent 
the control. ........................................................................................................................... 94 

Figure 50. Collagen accumulated in the culture medium as a function of NO donor concentration. 
Collagen is graphed in blue columns and DNA in orange triangles at each concentration. 
Standard deviations are represented in bars and results from three independent experiments.
 97 

Figure 51. Fmoc-PXG and Fmoc-PXG/NO (100 µM) samples were processed according to the Sircol 
protocol and are shown in the first two columns, respectively. For comparison, a third 
column is shown, representing the result of collagen assessment by Sircol assay, of culture 

medium of fibroblasts incubated with a 100 µM Fmoc-PXG solution. ............................... 98 

Figure 52. Collagen assessed by Sirius Red reaction. The left column represents the assessment of 

Collagen of a sample of 100 µM Fmoc-PXG whereas C10, C50 and C100 are the result of 
collagen quantification from culture medium samples of fibroblasts incubated with 10, 50 

and 100 µM of Fmoc-PXG, respectively. ............................................................................ 99 



www.manaraa.com

9 
 

Figure 53. Collagen deposited onto the extracellular matrix versus NO donor concentration. Collagen 
is represented in light blue columns and DNA in orange triangles. Standard deviations are 
represented in bars and result from three independent measurements. .............................. 100 

Figure 54. UV Spectra of Fmoc-PXG prior its reaction with NO gas, filled line, and after reaction, 
dashed line. ........................................................................................................................ 109 

Figure 55. Mass spectrum of Fmoc-PXG, prior to its reaction with NO gas, obtained by electrospray 
ionization (positive mode), in a quadrupole ion trap mass spectrometer. It confirms the 
molecular mass expected for Fmoc-PXG, detected as di- (P/2), tri- (P/3), tetra- (P/4), penta- 
(P/5) and hexaprotonated (P/6) cationic adducts of the target peptide. .............................. 110 

Figure 56. Mass spectrum of Fmoc-PXG following reaction with NO gas, abbreviated as Fmoc-
PXG/NO. Mass spectrum was obtained by electrospray ionization (positive mode), in a 
quadrupole ion trap mass spectrometer. ............................................................................. 110 

Figure 57. Mass spectrum of Fmoc-PXG obtained by matrix-assisted laser desorption/ionization 
(positive mode) in time-of-flight mass spectrometry. ........................................................ 111 

Figure 58. Mass spectrum of Fmoc-PXG/NO obtained by matrix-assisted laser desorption/ionization 
(positive mode) in time-of-flight mass spectrometry. ........................................................ 112 

Figure 59. Infrared spectra of Fmoc-PXG prior (in blue) and following (in red) reaction with NO gas.
 ........................................................................................................................................... 113 

Figure 60. Collagen quantified via Sircol assay for increasing fibroblast densities. ............................ 115 

Figure 61. Collagen produced by fibroblasts incubated with different concentrations of NO donor 
SNAP, in culture medium without FBS. ............................................................................ 117 

Figure 62. Collagen produced by fibroblasts incubated with different concentrations of NO donor 
SNAP, in culture medium with 10% FBS. ......................................................................... 118 

 

  



www.manaraa.com

10 
 

LIST OF TABLES 

Table 1. Dipeptide crystal permeabilities and selectivities towards He, O2, N2, and Ar. Reprinted with 
permission from Afonso et al. [33]Copyright 2010 John Wiley & Sons, Inc............................ 32 

Table 2. Crystal data and structure refinement of a LS crystal are presented. ........................................... 41 

Table 3. Kinetic diameters and excluding temperatures of the gas compounds. ....................................... 53 

Table 4. Ninhydrin assay was performed on the solution resulting from the reaction of peptide with NO 
gas. Absorbance values, as well as the number of primary amine molecules calculated by the 
calibration curve are shown. ...................................................................................................... 90 

Table 5. IC50 and IC90 determined from the dose response curve nonlinear regression for Fmoc-PXG (R 
square 0.992) and Fmoc-PXG/NO (R square 0.943). ................................................................ 93 

Table 6. Log reductions of viable colonies treated with Fmoc-PXG or Fmoc-PXG/NO versus untreated 
bacteria colonies for peptides concentration 19 µM. ................................................................. 95 

Table 7. Log reductions of viable colonies treated with Fmoc-PXG or Fmoc-PXG/NO versus untreated 
bacteria colonies for peptides concentration 9 µM. ................................................................... 95 

Table 8. Infrared absorption peaks for both Fmoc-PXG and Fmoc-PXG/NO. Both samples present the 
typical Amide I and Amide II bands, highlighted in light and dark blue, respectively. .......... 113 

Table 9. Collagen quantified via Sircol assay through different pepsin digestion procedures. Values are 
the result of triplicate analysis. ................................................................................................ 116 

Table 10. Collagen quantified via Sircol assay using different ultracentrifugation columns. Values are the 
result of triplicate analysis. ...................................................................................................... 116 

  



www.manaraa.com

11 
 

LIST OF ABBREVIATIONS 
 
Amino Acids  

cDNA, complementary DNA 

A or Ala, Alanine 
 

CH4, methane  

C or Cys, Cysteine 
 

Cha, cyclohexylalanine 

D or Asp, Aspartic acid 
 

Co, Cobalt 

E or Glu, Glutamic acid 
 

CO2, carbon dioxide  

F or Phe, Phenylalanine 
 

COMPcc, oligomeric matrix protein coiled-coil  

G or Gly, Glycine 
 

CSP, coiled coil structure protein  

H or His, Histidine 
 

CuKa radiation - copper K alfa radiation 

I or Ile, Isoleucine 
 

D, coefficient of diffusion or diffusivity 

K or Lys, Lysine 
 

DCM, dichloromethane 

L or Leu, Leucine 
 

DFU, diabetic foot ulcer  

M or Met, Methionine 
 

DIEA, N-ethyl-N,N-diisopropylethylamine 

N or Asn, Asparagine 
 

DMF, N,N-dimethylfomamide 

P or Pro, Proline 
 

Ds, self-diffusivity 

Q or Gln, Glutamine 
 

Dt, transport (or chemical) diffusivity 

R or Arg, Arginine 
 

Dt0, the Maxwell–Stefan diffusivity  

S or Ser, Serine 
 

E. Coli, Escherichia coli 

T or Thr, Threonine 
 

eNOS, endothelial NOS 

V or Val, Valine 
 

ESI-MS, electrospray ionization mass spectrometry 

W or Trp, Tryptophan 
 

FDA, food and drug administration  

Y or Tyr, Tyrosine 
 

Fmoc, fluorenylmethoxycarbonyl 

  
Fmoc-PXG, Fmoc-Pexiganan  

Others  
FTIR, Fourier transform infrared  

ACN, acetonitrile 
 

GSNO, S-nitroso-glutathione  

Ar, argon 
 

GTN, nitroglycerin  

c, concentration gradient 
 

H2, hydrogen 

CCD, charge coupled device 
 

HBTU, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate 

   



www.manaraa.com

12 
 

He, helium 
 

PEG, Poly(ethylene glycol)  

I2, iodine 
 

pKa, logarithm of acid dissociation constant 

iNOS, inducible NOS 
 

PVA, Poly(vinyl alcohol) 

ISMN, isosorbide mononitrate 
 

PXG, Pexiganan 

J, flux density 
 

RHCC, right-handed coiled coil  

LMWGs, low-molecular-weight gelators 
 

rmsd, root mean square displacement 

MBHA Resin, Rink-amide 4-methyl-
benzhydrylamine 

RNS, reactive nitrogen species  

MBioF, metal-biomolecule framework 
 

RP-HPLC, high pressure liquid chromatography 

MOF, metal-organic framework  
 

SAF, self-assembled fibers 

MPLC, medium pressure liquid 
chromatography 

 
SNP, sodium nitroprusside 

 
SPPS, solid phase peptide synthesis 

MTBE, methyl tert-butyl ether 
 

TFA, Trifluoroacetic acid 

N2, nitrogen 
 

TIS, triisopropylsilane 

NO, nitric oxide 
 

UV, ultraviolet  

NONOates, N-bound Diazeniumdiolate 
 

VEGF, vascular endothelial growth factor 

NOS, nitric oxide synthase 
 

Vfeed, volume of feed chamber 

O2, oxygen 
 

Vsample, volume of sample chamber 

PAs, Peptide amphiphiles 
 

Xe, xenon 

  
Zn, Zinc 

  



www.manaraa.com

13 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER I 

INTRODUCTION 
 
  



www.manaraa.com

14 
 

  



www.manaraa.com

15 
 

I.1. Overview of Molecular Self-assembly 

 
The development of materials on a nanometer scale has had a striking impact on several fields 

of science and brings together knowledge from a multitude of areas as diverse as applied 

physics, materials science, supramolecular chemistry, mechanical and electrical engineering. 

Nowadays, application of nanotechnology goes far beyond the traditional information 

technology field and in fact is currently being applied into medicine through the discovery of 

biomarkers, molecular diagnostics and drug discovery and delivery. [1, 2] 

Advances within the field of nanotechnology include the development of more precise and 

predictive fabrication techniques.  

A conventional approach to manufacturing is based on the “top down” concept, which seeks to 

create smaller devices by using larger ones to direct their assembly, such as the lithography 

process. However, to finely control the structure and function of materials at the molecular level, 

a new approach needs to be brought into action. Molecular self-assembly, defined as the process 

by which supramolecular structures are spontaneously formed through non-covalent interactions, 

has emerged as a viable alternative to traditional manufacturing techniques. Such process is part 

of the so called “bottom up” mechanism, in opposition to the already mentioned “top down”. 

Both are illustrated in Figure 1. 

 

 

Figure 1. Scheme illustrating top down versus bottom up manufacturing processes. The top-down 

process consists on the patterning of assemblies whereas the bottom-up approach is based on the 

interaction of simple building blocks to form a well-ordered assembly by means of molecular recognition 

and self-assembly. Reproduced from Gazit [3] with the permission of the Royal Society of Chemistry. 
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Many biological structures employ molecular self-assembling mechanisms, such as the 

formation of DNA double helix from two complementary deoxyribonucleic acid strands, or the 

interactions between four hemoglobin polypeptide chains to form a functional tetrameric 

hemoglobin protein, or even through self-assembly of lipid bilayers in cell membranes.[4, 5] In 

the case of DNA double helix, its structure is stabilized by hydrogen bonds formed by 

complementary nucleotide bases and by the stacking of adjacent bases.[6] Scientists, inspired by 

the remarkable specificity and robustness of these assemblies have engineered several 

sophisticated structures, through single-stranded DNA self-assembly, just as illustrated in 

Figure 2.[7, 8]  

 

Figure 2. Illustration of design principle underlying the DNA brick structures. The authors compare their 

design with LEGO® bricks. (A) A single stranded DNA with 32 nucleotides as the building block. (B) 

Each two-brick architectures assemble via hybridization of two complementary assemblies. Figure 

adapted from Ke et al. [7] with the permission of The American Association for the Advancement of 

Science. 

 

Cell membranes, on the other hand, are a result of self-assembling of phospholipids into lipid 

bilayers. The formation of these unique architectures is driven by its amphipatic character, 

gleaned by a hydrophobic long chain of fatty acyl groups and a hydrophilic phosphate moiety to 

which it is linked. When in aqueous solution, phospholipids self-assemble in a way that exposes 

the hydrophilic head into the aqueous environment while segregating the hydrophobic tails in a 

core, stabilized by van der Waals interactions.[9] This assembly mechanism has also served as 

the basis for the development of numerous structures such as liposomes, which are currently 

commercially available for therapeutic drug delivery.[10-12] It is clear that several mechanisms 

of self-assembly can take place, however, what triggers and stabilizes these supramolecular 

structures can be traced down to simple noncovalent interactions. 

By mimicking nature, scientists are trying to generate new building blocks capable of self-

assembling into supramolecular structures with optimized functional abilities. 

 

  



www.manaraa.com

17 
 

I.2. Peptides as building blocks for self-

assembly 

Among the several building blocks available, peptides are burgeoning as promising candidate 

monomers for self-assembly. This is likely a consequence of the chemical and physical diversity 

of natural and synthetic amino acids, holding side chains with a multiplicity of charges, 

hydrophobicity and sizes. Such a diversity of properties is important, allowing a high level of 

design versatility. The incorporation of certain amino acids will promote the formation of 

specific interactions. For instance, the incorporation of acidic and basic amino acids may 

promote electrostatic interactions, whereas the introduction of aromatic amino acids may lead to 

π-π interactions. The different types of interactions and the amino acids that promote them are 

depicted in Figure 3. Ultimately, a meticulous selection of the amino acids that constitute the 

peptide enables a certain level of prediction of noncovalent interactions that will take place. 

This is partly the basis of rational design of peptide-based self-assembled materials. In addition 

to its versatility, peptides have potential for being explored into medical applications due to the 

likelihood of biocompatibility and biodegradability.[13] 
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Figure 3. Amino acids with distinct physical and chemical properties promote the formation of particular 

types of interactions. A schematic representation of the interactions between different classes of natural 

amino acids is presented. Reproduced from Mart et al. [14] with the permission of the Royal Society of 

Chemistry. 

 

A greater understanding of the principles governing these interactions facilitates the rational 

design of specific assemblies. 

Hydrophobic interactions take place between nonpolar amino acids (V, L, I and A), whereas 

aromatic amino acids (F, Y and W) may be involved in π-interactions.[15] Hydrogen bonds can 

be formed between the carbonyl and amide groups of peptide bonds, resulting in a common type 

of interaction in peptides. In addition, hydrogen bonds can also originate from side chain 

residues between the carbonyl and hydroxyl groups present in certain residues (S, T, D and E).  
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Ionic interactions, on the other hand, arise between positively and negatively charged amino 

acids (R, K, D and E). The diversity of interactions that can occur between peptides, gives us a 

glimpse of the myriad of possible combinations of assemblies that can be achieved. 

Materials with the ability to change properties in response to local environmental cues are 

particularly attractive for biomedical applications, allowing, for instance, controlled release of a 

drug incorporated in a matrix in response to an external stimuli, such as pH, temperature or 

ionic strength.[14] Peptides are molecules with responsive aptitude and can therefore be 

incorporated in biomaterials to induce a macroscopic change to the material when subjected to 

specific shifts in environmental conditions. For example, given that protonation and 

deprotonation of functional groups is a function of pKa, a pH shift may be sufficient to hamper 

pre-existing interactions. Such a pH shift can therefore induce the formation or destruction of 

interactions that may lead to physicochemical shifts and can ultimately induce macroscopic 

changes to the material. Such dynamic behaviour allows the production of smart materials that 

modify their macromolecular structure according to environmental shifts.[14, 16]  

It is still, however, a major challenge to solely apply these concepts into the design of a novel 

material. Several design strategies based on peptides are being refined, mainly involving either 

the production of peptide amphiphiles or the application of the knowledge gained from protein 

secondary structural motifs, such as the α-helix and β-sheet, which are illustrated in Figure 4. 

 

Figure 4. Representation of three antiparallel β-strands, forming a β-sheet, which are stabilized by 

hydrogen bonds, on the left of the image, and an α-helix, on the right. The secondary structures depicted 

were singled out from the enzyme Molinate Hydrolase with the author’s approval.[17] 
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Different architectures have been achieved while using peptides as building blocks. Possible 

assemblies include fibres, tapes, tubes, sheets and spheres, as depicted in Figure 5. 

 
Figure 5. Self-assembly of peptides may lead to the formations of different structure, such as fibers, 

tubes, spheres and sheets. Figure from Zelzer et al. [18] with the permission of the Royal Society of 

Chemistry. 

 

There are still limitations to the application of peptides, namely the high cost associated with the 

synthesis of peptides as well as their unsuitability for high temperatures or strong acid or 

alkaline conditions. As a consequence, peptide-based materials have their operable conditions 

confined to specific environments. In addition, peptide structures have a narrow electrical 

conductivity which impairs their application into electronic appliances.[19] Still, they provide 

an excellent platform for the creation of novel materials through the bottom up approach with 

great prospects for biomedical applications. 
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I.3. Aim and Thesis Outline  

 
The present PhD thesis explores peptide-based self-assembled materials and unravels some of 

its potential applications. Peptides may range from short to long and more flexible chains 

enabling the construction of structurally diverse arrangements, from solid crystals to soft 

disordered materials. Both types of materials were here explored for the loading and delivery of 

gas molecules. While microporous peptide crystals, may find application as materials for 

physical adsorption/separation of relevant industrial gases (Chapter II), soft peptide materials 

can only retain gas molecules that are chemically adsorbed. Here, the loading and delivery of 

the gasotransmitter NO, through chemical functionalization of a self-assembled peptide, was 

studied, a process of biomedical interest (Chapter III). 
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CHAPTER II 

CRYSTALLINE MATERIALS BY 

PEPTIDE SELF-ASSEMBLY 
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II.1. Overview of Peptide Self-assembly 

forming Crystalline Materials 

Ghadiri and co-workers first reported in 1993 the assembly of cyclic peptides via multiple 

hydrogen bonds.[20] The concept consisted in building a cyclic peptide composed of alternating 

L- and D-amino acids that adopt a planar ring conformation, which can then self-assemble on 

top of another, leading to a tubular architecture, as illustrated in Figure 6. The final assembly 

may be designed to have a wider diameter by simply increasing the number of amino acids in 

the cyclic peptide subunit, or its surface tailored to possess certain chemical properties by 

careful selection of its composing amino acids. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Depiction of nanotube assembly from cyclic D,L-peptides. On the left, the peptide planar ring 

formed by the alternating L and D-amino acid, which self-assembles by stacking each ring on top of each 

other leading to cylinder-like structure, on the right. Figure from Bong et al.[21] 

 

These assemblies, due to their inner tubes, should allow the transportation of molecules through 

its channel. This was proven when a cyclic peptide, employing the above mentioned design 

principles, self-assembled in a lipid bilayer, allowing glucose transmembrane 

transportation.[22] The peptide subunit, as well as its self-assembled structure within a lipid 

bilayer, are schematically represented in Figure 7. The designed peptide subunit consisted of 10 

hydrophobic residues, essentially Trp and Leu, which upon self-assembly, produced a channel 

with a 10 Å inner diameter.  
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Figure 7. Representation of the chemical structure of the 10-residue peptide subunit, shown on the left, 

which self-assembles into a tubular transmembrane channel structure within a lipid bilayer membrane, 

represented on the right. Adapted with permission from Granja et al.[22] Copyright 1994 American 

Chemical Society. 

 

These materials revealed a sophisticated complexity and are often difficult to characterize in 

detail. Simpler and more affordable models may be achieved by employing smaller 

oligopeptides, such as the dipeptides.  

Görbitz et al., while performing a systematic investigation of the crystal structures of sixteen 

hydrophobic dipeptides formed by L-amino acids with residues chosen from Ala, Val, Leu, and 

Phe (A,V,L and F), discovered that Val-Ala (VA) dipeptide crystals present narrow 

hydrophobic channels. [23] The remarkable structure attained by self-assembly of the dipeptide 

was found to be driven by hydrogen bonds formed from head-to-tail. The discovery that VA 

crystallization led to such an outstanding framework spurred the team to pursue other possible 

tube-forming crystals through the combination and crystallization of five different hydrophobic 

residues – Ala, Val, Ile, Leu and Phe (A, V, I, L and F). Görbitz team was able to obtain several 

structures, some of which were in fact able to form nanotubes. Those which self-assembled into 

nanotubes would go on to be classified as either belonging to Val-Ala (VA) or Phe-Phe (FF) 

class, depending on whether their inner tube was hydrophobic or hydrophilic, respectively. [24] 

An elucidating matrix compiling their finding is depicted in Figure 8. [24-29]  
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Figure 8. The matrix on the top-left, illustrates the type of crystalline structure obtained by self-assembly 

of the dipeptides formed by the combination of the two residues listed. Particularly interesting are the 

tubular structures with inner tubes that are either hydrophilic, in blue circles, or hydrophobic, in orange. 

Reprinted with permission from Görbitz et al.[24]. Copyright 2007 John Wiley & Sons, Inc. 

 

Considering that such peptide-based structures are constructed from chiral building blocks - all 

amino acids except Glycine are chiral - their interior channel is also chiral. This is an important 

characteristic that could grant these structures good prospects for chiral absorption applications, 

although perhaps limited by the size of the inner channel. [24] In addition, dipeptide structures 

possess a remarkably stable porous framework, which drove scientists to explore the application 

of dipeptide crystals into gas storage applications.  

Initially, Soldatov et al. reported on the sorption properties of two hydrophobic dipeptides, AV 

and VA, both forming inner hydrophobic nanotubes with a diameter  of 5.0 and 4.7 Å, 

respectively.[30] The team measured Xenon (Xe) adsorption isotherms at room temperature for 

both crystals. The corresponding nanotube topography and crystal structure as well as the 

resulting Xe adsorption isotherms, are schematically represented in Figure 9.  
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Figure 9. (A)  AV (left) and VA (right) dipeptide molecules assemble forming a channel (van der Waals 

dimensions). (B) Sorption isotherms (298 K) of Xe in AV (solid circles) and VA (open circles). Θ is the 

Xe/dipeptide molar ratio. Adapted with permission from Soldatov et al.[30] Copyright 2004 John Wiley 

& Sons, Inc. 

 

Even though the materials present similar channel sizes their sorption behaviour is remarkably 

different, a phenomenon which the authors attribute to a tighter binding between the host 

channel and the guest atom on the smaller VA channel. The authors realized that the studied 

dipeptides had robust porous frameworks with a high sorption capacity and the ability of 

preferential sorption, even towards chemically inert species such as Xe. These results 

demonstrate that dipeptides with propensity to form tubular frameworks may be useful in 

selective gas storage applications. 

Comotti and co-workers, on the other hand, tested four crystalline dipeptides, also belonging to 

the VA class – AV, VA, IV and VI– as sorbent materials for methane (CH4), carbon dioxide 

(CO2) and hydrogen (H2), showing the remarkable adsorption capacities and once more 

revealing the real potential of these dipeptide crystals. [31] The adsorption behaviour of the 

above mentioned gases was analysed in the dipeptide crystals, which form channels with 

distinct diameters of 5.0, 4.7, 3.9 and 3.7 Å (for AV, VA, IV and VI, respectively) and highly 

hydrophobic walls. The chemical structures of the dipeptides employed, as well as the obtained 

adsorption isotherms, are represented in Figure 10. 

 

A B 
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Figure 10. (A) Chemical structures of AV, VA, IV and VI (on the top). Crystal structure of AV showing 

the open hydrophobic channel of 5 Å (on the bottom). (B) Adsorption isotherms (isoT) of CO2 (full 

symbol) and CH4 (open symbol) at 195 K for AV and VA. (C) Adsorption isoT of CO2  and CH4  in IV at 

195 K. Adapted from Comotti et al. [31] with permission of The Royal Society of Chemistry. 

 

The higher sorption capacity of VA over AV for both CO2 and CH4 (Figure 10B) is consistent 

with Soldatov’s previously presented results, although the authors of this study attribute the 

results to the larger volume available in the case of VA, which is made possible by the channel 

helicity (see Figure 9A), albeit presenting a narrower channel cross-section, 5.0 Å and 4.7 Å for 

AV and VA, respectively.  

Interestingly, increased CO2/CH4 selectivity was achieved when employing a dipeptide crystal 

with tighter channels - IV with a channel diameter of 3.9 Å (Figure 10C). 

In our laboratory, adsorption isotherms of nitrogen (N2), oxygen (O2) and Ar were also 

determined for dipeptide crystals belonging to the VA class (VI, IA, IV and VV).[32] The 

graphs of the resulting adsorption isotherms, measured at 20ºC, were organized by material and 

are represented in Figure 11. 

A B 

C 
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Figure 11. Adsorption Isotherms of Ar (circles), O2 (triangles) and N2 (diamonds) for each material, at 

20ºC. The graphs are organized showing the dipeptides with wider pores on the bottom and narrower 

pores on the top. Reproduced from Afonso et al. [32] with permission of The Royal Society of Chemistry. 

 

Crystals with wider pores were shown to adsorb greater quantities of species, although not in 

proportion to its cross-section. In all cases a remarkable Ar/O2 adsorption selectivity was 

determined, reaching an incredible value of 1.27 in the case of VI dipeptide. Although its 

application into oxygen purification processes may be hindered by its low capacity, these 

materials are evidence of a new class of silver-free sorbents and provide chemical and structural 

clues for designing new efficient sorbent materials. 

Our team has also successfully employed dipeptide crystals as permselective materials.[33] We 

have shown that dipeptide single-crystals can act as permeable membranes able to distinguish 

between Ar, N2 and O2 - gas species which are highly relevant for industrial separation 

processes.  

In order to do so, three dipeptides – LS, VI and AA – were crystallized and its structure, 

depicted in Figure 12, determined by single crystal X-ray diffraction.  
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Figure 12. Structural formula (on top) and crystal structure (on the bottom), of the three dipeptides 

studied. Reprinted with permission from Afonso et al. [33] Copyright 2010 John Wiley & Sons, Inc. 

 

Their distinct crystal lattices lead to a diversity of sizes and topographies in the pores. The void 

volume that is accessible to helium (He) was determined for all crystal structures, as displayed 

in Figure 13. 

 

Figure 13. Crystal pore topography of the studied dipeptides as determined with a 2.6 Å probe. 

Reprinted with permission from Afonso et al. [33] Copyright 2010 John Wiley & Sons, Inc. 

 

LS, VI, and AA single-crystal permeabilities towards O2, N2, Ar, and He were determined at 

room temperature, and selectivities were calculated. Results are shown in Table 1.  
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Table 1. Dipeptide crystal permeabilities and selectivities towards He, O2, N2, and Ar. Reprinted with 

permission from Afonso et al. [33]Copyright 2010 John Wiley & Sons, Inc. 

Dipeptide 
Channel 

Diameter (Å)[a] 

Permeabilities (Barrer) Selectivities[b] 

He O2 N2 Ar αO2/N2 αO2/N2 αO2/He 

LS 4.9 / 4.3 1.7 x 107 9.5 x 106 1.1 x 107 1.2 x 107 0.86 0.79 0.56 

VI 3.7 / 3.0 2.8 x 104 2.7 x 103 2.2 x 103 N.D.[c] 1.2 >135[c] 0.096 

AA − / − 19 31 N.D.[c] N.D.[c] >124[c] >124[c] 1.6[c] 

[a] Calculated from the crystal structure/reported in reference[24] based on He pycnometry. [b] Calculated from 

single-crystal monocomponent permeation experiments. [c] Not detected. The minimum permeate flow rate that can 

be accurately measured in the setup is ca. 0.0005 mm3h-1, which corresponds to permeabilities of 0.25 Barrer (AA 

crystals) and 20 Barrer (VI crystals).[33] 

 

LS crystals, with larger nanochannels, were found to be permeable to all three tested gases, 

whereas VI crystals, presenting a channel size that resembles those of the gas molecules, were 

not permeable to Ar. AA's crystals, on the other hand, although consisting of discrete pockets 

rather than channels, were found to be permeable to O2, a remarkable finding that may be 

assigned to the flexibility of the supramolecular structure. In fact, the penetration of guest 

molecules in narrow pores had already been reported by Soldatov et al. [34] and attributed to 

the flexibility of the crystal framework. To sustain this hypothesis, X-ray diffraction data was 

collected from an AA crystal at high O2 pressure (8.5 bar). To allow such collection of data, an 

AA crystal was mounted in a capillary sealed to a valve, as shown in Figure 14.  

 

 
Figure 14. Photograph of the high pressure X-ray data collection apparatus. The crystal is mounted in a 

capillary and attached to a miniature valve. 
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Traces of oxygen molecules were found in the AA channels at 8.5 bar of pure oxygen, as 

depicted in Figure 15. It was also found that carbon-carbon distance of opposite methyl groups 

increased, even if only slightly, from 5.467 to 5.473 Å, upon pressurization. 

 

 
Figure 15. Crystal structure of AA with O2 viewed along the c axis (left) and along the b axis (right). O 

atoms are coloured in red and C atoms in grey. Reprinted with permission from Afonso et al. [33] 

Copyright 2010 John Wiley & Sons, Inc. 

 
The permeabilities of the species were found to be size-dependent allowing the sequential 

separation of argon, nitrogen and oxygen. The O2/N2 selectivity determined was very high, well 

above those of polymeric and carbon-based materials.[33] 

The increasing interest in the study of distinct sorption behaviour and transport properties on 

nanotube materials is stimulated by its relevance into applications such as sensors, catalysts and 

membranes for gas separation.  

 

Dipeptides may also be used as organic linkers to build metal-biomolecule frameworks 

(MBioFs), a subclass of the well-known Metal-Organic Frameworks (MOFs). [35] MOFs are 

classified as crystalline hybrid materials, constructed by connecting organic linkers with metal 

ions, often resulting in two- or three-dimensional periodic structures. Rabone et al. reported on a 

MOF consisting of a glycylalanine (GA) dipeptide coordinated to zinc ions.[36] The material 

appeared to behave mostly like a nonporous solid until a certain critical pressure was achieved, 

at which point the material opened to allow gas adsorption. The authors argue that the 

conformational degrees of freedom granted by the dipeptide linker are key to producing such a 

responsive material. The same group has presented a glycylserine (GS) based MOF with a 

transition behaviour from porous to nonporous, driven by hydrogen bonding patterns from the 

hydroxyl group of serine residue. [37] 

Our group has also explored different strategies in an attempt to generate dipeptide-metal 3D 

frameworks.[38] Two new MBioFs were prepared and isolated: [Zn(Gly-Asp)]•H2O and 

[Co(Gly-Asp)]•H2O. Their structure is represented in Figure 16.  
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Figure 16. (a) Structure of  (1) [Zn(Gly-Asp)]·H2O  and  (2) [Co(Gly-Asp)]·H2O, (b) Coordination 

modes of Zn2+ ions around the dipeptide GD in compound (1) and coordination modes of Co2+ ions 

around the dipeptide GD in compound (2). Zn dark blue, Co violet, O red, C grey, N blue, H white. [38] 

 

Gly-Asp (GD) was used as a precursor material for post-synthetic modification with the Arg-

Gly-Asp (RGD) tripeptide. The RGD sequence is a well-known cell attachment site of a large 

number of proteins and integrins.[39] Of particular relevance is the αvβ3 integrin, which is 

involved in tumour-induced angiogenesis and tumour metastasis.[40] RGD or RGD-analogues 

binding to αvβ3 integrin can be exploited to target tumours.   

1 2 
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Abstract  

 

The tubes formed by self-assembly of dipeptides provide an incredible platform to 

experimentally measure transport properties at the nanoscale.  

Herein, we exploit the unique packing of LS crystals to determine transport diffusivities of CO2, 

CH4, N2, O2, and Ar and study the influence of several parameters such as crystal length, 

temperature, pore loading and molecular size of the guests. 

We show that the mass transport in LS crystals is fast, in the upper end of the values reported 

for zeolites, and that the pore blocking may yield a significant effect on the overall results. 

In addition to the systematic study of the intraparticle diffusion properties of dipeptide crystals 

presented next, we conducted a similar study using other (inorganic) 1D porous crystals. Those 

results are presented at the end of this chapter. 
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Introduction 

Dipeptide crystals: structure and gas sorption behaviour 

Organic molecules that form porous crystals tend to collapse upon removal of the co-

crystallized solvent.[42] Interestingly, hydrophobic dipeptides crystallize with hydrogen-bonded 

head-to-tail chains in the shape of helices. The resulting structures have permanent chiral 

channels with a van der Waals’ diameter up to 10 Å, tunable through residue substitution.[29] 

Dipeptide crystals reversely adsorb significant amounts of gas molecules [30] and thus should 

be considered porous materials.[43] Indeed, gas sorption applications look very promising for 

this class of materials.[44] In 2004, Soldatov et al. argued that dipeptides could be used as 

microporous adsorbents and reported that AV and VA have robust porous frameworks with a 

high capacity towards chemically inert species such as Xe.[30] Later on, the Sozzani group have 

used dipeptides as adsorbents of CO2, CH4 and H2, observing high and fully reversible 

adsorption for all gases. The authors obtained high CH4/CO2 selectivity and good H2 uptake 

using IV. [31] Recently, we have shown that dipeptide crystals are excellent permselective 

materials capable of distinguishing compounds of very close molecular size. [33] It should be 

noticed that dipeptides show unprecedented and interesting framework flexibility upon gas 

adsorption, as was confirmed using different experimental approaches.[30, 33, 34, 45] 

Remarkably, it was already observed that a zinc–glycylalanine framework exhibits a gate-

opening pressure towards CO2. The flexibility of the dipeptide plays a crucial role in the 

structural changes upon adsorption.[36] 

The Leu–Ser packing is unique among the class;[46] crystals possess hexagonal symmetry with 

hydrophobic channels, decorated by the Leu side chains, running along the hexagonal axes.  

The Leu–Ser pore diameter calculated from the crystal structure is in the range of 4.90–4.96 Å, 

while assessed from He pycnometry is 4.3 Å.[34] Another crystal with hexagonal channels, 

formed by only one amino acid, c-amino butyric acid, was already described. However its 

microporous behaviour upon removal of the solvent guest was not yet confirmed.[47] In the 

case of Leu–Ser, there is a complete loss of cocrystallized solvent (acetonitrile) and re-uptake of 

an inorganic molecule (I2) with full retention of the supramolecular host network (peptide). [46]  

 

General mass transport model 

Diffusion is the process of random motion of molecules that is quantified by Fick’s first law, 

shown in equation (1): 

� = −�(�)
�	

�

                                                              (1) 
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correlating the flux density, J, with the gradient of concentration, c, of the diffusing species in 

the z direction. D is the coefficient of diffusion or diffusivity. 

 

There are several distinct diffusion coefficients associated with different physical concepts of 

diffusion in porous materials.[48, 49] The diffusion of individual molecules in the limit of 

vanishing concentrations under equilibrium is described by the self-diffusivity, Ds. The 

macroscopic diffusion of mass that arises in the presence of a concentration gradient is governed 

by the transport (or chemical) diffusivity, Dt. Molecular transport under the so-called “single-

file conditions” is characterized by the fact that any mutual passage between adjacent molecules 

is forbidden, [50] which is expected to be true within the narrow channels of LS crystals. 

Single-file Xe diffusion was already unequivocally confirmed in the 5.1 Å wide nanotubes of 

AV crystals at long time scales. [51, 52] Assuming one-dimensional channels with diameters 

close to those of the diffusants and sufficiently long channels, the self-diffusion drops to zero, 

leading to mean square displacements increasing only with the square root of time. In these 

conditions, as well as in many practical applications, such as pressure-driven membrane 

separation, it is the transport diffusion that is of great interest.[48] 

The overall effect of surface coverage in the transport diffusion coefficient is given by: 

 

��� =	��
� ln 	

� ln�
                                                      (2) 

 

where Dt0 is the Maxwell–Stefan diffusivity also referred to as “corrected diffusivity”. If the 

corrected diffusivity is independent of surface coverage and the adsorption isotherm deviates 

from linearity, Dt exhibits a sharp increase with pore filling. Such behaviour was already 

experimentally observed.[50] 
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Materials and Methods 

Crystallization 

LS (Bachem) crystals were grown through phase inversion of an aqueous solution by 

acetonitrile diffusion. Phase inversion was performed on crystallization plates (Emerald 

BioSystems Combiclover, Jr), by sitting drop crystallization. A 200 µL volume of acetonitrile 

was pipetted into each well and 5 µL of peptide aqueous solution was placed on each drop. The 

peptide solution concentration was 233 mg.mL-1. Crystals were collected and solvent 

evaporation was performed overnight in an oven (Memmert UL 30) at 60 ºC. Precession 

photographs of the peptide crystals were taken using an  X-ray Diffractometer (Gemini PX 

Ultra) equipped with CuKα radiation (l =1.54184 A°), a 4-circle kappa goniometer and a CCD 

Detector, to determine the orientation of the c-crystallographic axis (i.e. the orientation of the 

nanotubes) within the crystals. Crystals suitable for X-ray diffraction had a needle-like 

hexagonal shape. 

Structure Determination 

Diffraction data were collected at 293 K with a Gemini PX Ultra equipped with CuKα radiation 

(λ=1.54184Å), a 4-circle kappa goniometer and a CCD Detector. Data collection and data 

processing was carried out using CrysAlisPro software from Oxford diffraction. The structures 

were solved by direct methods using SHELXS-97 [53] with atomic positions and displacement 

parameters refined with SHELXL-97.[53] The non-hydrogen atoms were refined anisotropically 

and the hydrogen atoms were refined freely with isotropic displacement parameters. 

Adsorption isotherms 

Adsorption isotherms were determined using the volumetric method. The volumetric method is 

based on a gas expansion process from a feed chamber (Vfeed) to an adsorption chamber (Vsample), 

where the sample is placed. A schematic representation of volumetric apparatus used for this 

work is shown in Figure 17.  

The inner volumes, Vfeed and Vsample, including the vessels and connecting tubes were calibrated 

prior to adsorption. The determined volume of the feed gas chamber was 1.272 mL and of the 

sample chamber 0.990 mL.  

Samples (from 150 mg to 450 mg) were regenerated overnight under vacuum (<1 mbar) at 60 

ºC. The measurements were carried out at (293 ± 0.1) K up to 9 bar.  
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A cumulative measurement method was employed in this work, which consists on the collection 

of adsorption data through continuous pressure increment. 

 

 
Figure 17. Schematic representation of the apparatus used for collection of adsorption isotherms. The 

instruments are placed in a controlled temperature environment.  

Single-crystal diffusion experiments  

Single-crystal diffusion experiments were performed against the atmosphere using a pressurized 

feed gas chamber (chamber volume 1.44 mL). Single crystals were mounted in glass capillaries 

using cyanoacrylate glue, such as depicted in Figure 18. Leak rate checks were performed to 

ensure that the glue was not permeable to the gases. The intracrystalline diffusion rates were 

obtained at 293.15 K from the feed chamber pressure drop results. The dimensions of the 

crystals used in the experiments were obtained from digital imaging in an optical microscope. 

 

 

Figure 18. Schematic representation of the setup used for single-crystal diffusion experiments. A crystal 

is carefully glued to a glass capillary and connected to a feed pressure chamber.  
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Results and Discussion 

Crystallization 

LS crystals grow with a needle-like hexagonal shape as shown in Figure 19. 

 
Figure 19. Optical microscope photograph of LS crystals (left), with dimension bar indicative of 200 µm, 

and a scanning electron microscope image emphasising their hexagonal shape (right).  

Structure Determination 

In the course of this study X-ray diffraction data sets of several crystals were collected in order 

to confirm the absence of solvent molecules in the pores and the crystallinity of the particles. An 

example of the collection and refinement data of one LS crystal is given in Table 2. 

Table 2. Crystal data and structure refinement of a LS crystal are presented. 

Dipeptide LS 

Formula C9H18N2O4 

Mr 218.3 

Crystal system Hexagonal 

Space group P61 

a, Å 18.1703(3) 

c, Å 6.1687(1) 

V, Å3 1763.80(5) 

Z 6 

Dx, g cm-3 1.233 

R[F2>2s(F2)] 0.0387 

wR[F2>2s(F2)] 0.118 

Drmax (e Å-3) +0.57 

Drmin (e Å-3) -0.16 
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Adsorption isotherms 

Pure adsorption equilibrium isotherms of CO2, CH4, Ar, O2 and N2 on LS were determined at 

293.15 K, represented in Figure 20. In the pressure range, the occupancy of the pores is low, 

and thus intermolecular interaction of the guest species should be negligible when compared to 

guest–host interaction. The Langmuir equation fits well to all the adsorption isotherms, although 

for the weaker sorption species (Ar, N2 and O2) at moderate pressures, Henry’s law applies and 

transport diffusivity (Dt) should not depend on pore loading. 

 
Figure 20. Adsorption equilibrium isotherms at 293.15 K expressed as the number of guest molecules 

per nm of LS nanochannels. 

Single-crystal diffusion experiments  

The dimensions of the crystals used in the experiments were obtained from digital imaging in an 

optical microscope (Nikon SMZ800). Examples of collected images are presented in Figure 21. 

 
Figure 21. LS crystals formed on the drop growing in different directions (left). Crystals are collected 

from the drop and placed on a glass microscope slide allowing their separation and facilitating the process 

of attaching a single crystal into a glass capillary (right). 

 



www.manaraa.com

43 
 

Effect of the molecular size of the diffusants 

Transport diffusivities of CO2, CH4, N2, O2, and Ar were determined in LS crystals. The 

dimensions of the crystals used were 0.840 mm (length) × 0.0155 mm (hexagonal side) for CO2, 

N2 and O2, 0.960 mm × 0.0264 mm for Ar and 0.884 mm × 0.0114 mm for CH4. 

The diffusion coefficients are very dependent on the pore size and topology and, obviously, on 

the molecular size of the guest molecules. Diffusion coefficients varying from 10-15 to 10-8 m2/s 

have been reported for zeolites.[48, 54] Diffusivities in LS are on the upper limit of the zeolites’ 

range, as seen in Figure 22. Several factors probably contribute to the observed fast mass 

transport: LS pores are very uniform with a variation of diameter along the channel of less than 

0.1 Å, the pore tortuosity is very low and the guest–host interactions established with the methyl 

groups that decorate the surface of the channels are weak. Despite the fast diffusion in LS 

crystals, in some experiments with Ar and CH4 a blockage of the crystal permeation was 

observed. It is possible that the propensity for pore blockage rises for larger diffusing 

compounds. 

 

Figure 22. Transport diffusivities of light gases in Leu–Ser crystals. Symbols as in Figure 20.  

Effect of crystal length 

Both O2 and Ar diffusivities were measured in crystals of considerably different length 

dimensions, as shown in Figure 23. The diffusivities become notably smaller as the crystal 

length increases. This is probably a consequence of pore blocking, a process that should be 

more significant with increasing length paths. The problem of blocking of narrow one-

dimensional pores was already mentioned with dipeptide crystals and is well known in 

zeolites.[34, 50] Furthermore, the adsorption isotherms, taken with polycrystalline solids in the 

size range of 1–40 mm, were all reversible and reproducible, including the ones of Ar and CH4. 
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However, as already mentioned, the permeation through single crystals with lengths in the range 

1–2 mm was sometimes blocked when using Ar or CH4. Thus, it seems that the tendency for 

pore blocking increases with the increase in size of the crystals. 

 
Figure 23.  Effect of the crystal length on the transport diffusivities. 

Effect of pore filling 

It was already mentioned that the transport diffusivity Dt should have a strong increase with 

pore filling.[50] The average pore filling in CO2 could be slightly increased by raising the feed 

pressure. As expected, an increment in the diffusivity with the pore loading was observed, as 

seen in Figure 24. Nevertheless, other factors such as the influence of the pressure in the crystal 

pore dimensions, crystal order and propensity for pore blocking cannot be ruled out.[45] 

 

Figure 24. Effect of the pore loading on the transport diffusivities. 
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Effect of temperature 

Molecular dynamic simulations of anisotropic guest molecules in pure silica Linde type A 

zeolite (LTA) have suggested an unexpected decrease of the diffusivity with the increase of 

temperature.[55] However, the temperature-dependent diffusivity measurements usually 

confirm the expected Arrhenius pattern.[56] The experimental setup allowed a limited range of 

temperature conditions. Diffusivities obtained at 293.15 K and 313.15 K show a slight but 

nevertheless surprising drop with temperature, shown in Figure 25. The increase of pore 

blocking at higher temperatures due to the decrease of the peptide framework stability cannot be 

excluded. 

 

 
Figure 25. Effect of temperature on the transport diffusivities. 
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Conclusions 

 

We have shown that the diffusion of small molecules in LS microporous crystals is fast, in the 

upper limit of the values reported for zeolites with the same approximate pore dimensions. 

Probably, the uniformity of the size dimensions along the pore axis, in contrast to the narrow 

windows interconnecting the cage topology of zeolites, favours the fast mass transport.  

Moreover, we have observed that pore blocking can be significant under certain experimental 

conditions (e.g. bigger diffusion species, higher temperatures, longer diffusion paths). The high 

flexibility of the dipeptide crystal frameworks – dipeptides are linked by hydrogen bonds – 

together with the fact that the pore and the diffusant have similar dimensions probably 

contributes to pore blocking propensity.[41] 
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Abstract  

Gas separation using porous solids have attracted great attention due to their energetic 

applications. There is an enormous economic and environmental interest in the development of 

improved technologies for relevant processes, such as H2 production, CO2 separation or O2 and 

N2 purification from air. New materials are needed for achieving major improvements. 

Crystalline materials, displaying unidirectional and single-sized pores, preferentially with low 

pore tortuosity and high pore density, are promising candidates for membrane production. 

Herein, we study hexagonal ice crystals as an example of this class of materials. By slowly 

growing ice crystals inside capillary tubes we were able to measure the permeation of several 

gas species through ice crystals and investigate its relation with both the size of the guest 

molecules and temperature of the crystal. 

 

 

Keywords: ice; light gases; diffusion 
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Introduction 

 

Separation or purification of light gases is crucial in many industrial activities. In fact, there is 

an enormous economic and environmental interest in the development of better technologies for 

relevant processes such as H2 production, CO2 separation or O2 and N2 purification from air. 

Membrane separation is growing as a low-cost and energy-efficient alternative to traditional 

methods, such as adsorption or cryo-separation. Most membranes in use in industry are 

polymeric [58], and despite the ongoing development of better polymeric materials, there is a 

trade-off between flow rates and selectivities.[59] Crystalline materials, displaying 

unidirectional and single-sized pores are promising candidates for membrane preparation. 

Metal-organic frameworks (MOFs) [60, 61] and peptide supramolecular systems [30, 31, 33, 

44] are among the most promising crystal structures, due to the variety of pore sizes and high 

pore density. Nevertheless, the key challenge in the context of using crystalline materials is to 

scale up the fabrication techniques of either dense polycrystalline layers [60] or mixed matrix 

membranes, which embed the selective particles inside the polymeric matrix.[61] It is well 

known that ordinary water and several organic compounds [62] solidify in a regular geometric 

lattice (crystal) containing unidirectional nanochannels. Here, using water ice as a model, we 

demonstrate that under controlled phase transition conditions it is possible to induce the 

orientation of the crystal lattice inside capillary tubes: a process that may find very interesting 

applications. We show that, inside capillary tubes, hexagonal ice crystals form by slowly 

growing in the direction of the c-axis and that they can be used as single crystal membranes able 

to distinguish between different gas molecules. We observed that the gas molecules cannot 

escape through the ice-glass capillary wall interface, which enables an easy scale-up by simply 

using perforated solid plates to promote multiple crystal growth. Moreover, we found that the 

flow rate of the gas species is severely regulated by ice temperature, expanding the number of 

potential species that may be separated. 
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Materials and Methods 

Crystallization 

The crystallization of ultrapure water was achieved inside capillaries of variable diameters 

(from 2.0 mm to 0.1 mm) and applying different temperature decreasing rates. The ice crystal 

structures and the alignment of the c-axis relative to the capillary were determined by X-ray 

diffraction.  

Diffraction data was collected with a Gemini PX Ultra equipped with CuKα radiation 

(λ=1.54184Å), a 4-circle kappa goniometer and a CCD Detector. Data collection and data 

processing was carried out using CrysAlisPro software from Oxford diffraction. The structures 

were solved by direct methods using SHELXS-97 [53]with atomic positions and displacement 

parameters refined with SHELXL-97.[53] The oxygen atoms were refined anisotropically. 

Precession photographs of the ice crystals were taken to determine the orientation of the c-

crystallographic axis. 

Single-Crystal Permeation Experiments 

Single-crystal permeation experiments were performed against the atmosphere using a 

pressurized feed gas chamber, a scheme of the apparatus is depicted in Figure 26. A small 

volume (around 7 × 10-3 µL) of ultrapure water (milli-Q water) was introduced inside a glass 

capillary. The ice crystal was obtained by cooling at temperature rate of 10 K/hr until 260 K 

followed by 360 K/hr towards the predetermined temperature. A standard cryostream cooler for 

X-ray diffraction was used. Pressure of the feed gas chamber was monitored and permeabilities 

were determined through a mass balance on the chamber volume. 

 

 

 

 

 

 

 

Figure 26. Scheme of the experimental setup used for the single-crystal permeation experiments. 
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Results and Discussion 

Crystallization 

We obtained the well-known ice Ih hexagonal crystal structure [63] with an oxygen atom on 

each vertex (Figure 27). The crystal disorder decreased (better-diffracting crystals) when using 

thinner capillaries and lower cooling rates (10 K/hr down to 260 K followed by 360 K/hr until 

reaching the required temperature). It is worth pointing out that although the freezing process 

often resulted in disordered ice, the crystallographic c-axis was always coincident with the 

capillary axis in the well-diffracting crystals. 

 

 

Figure 27. Crystal structure of ice Ih at 150 K viewed along the c-axis. Hydrogen atoms are not shown. 

Single-Crystal Permeation Experiments 

We measured ice permeability towards helium (Figure 28), the molecule with the smallest 

kinetic diameter (2.6 Å), and found that it is permeable in the c-axis direction. Disordered ice 

crystals were non-permeable. The hexagonal ice void nanochannels are smaller than all the gas 

molecular dimensions, including helium. However, the unexpected penetration of small 

molecules through other hydrogen-bonded supramolecular crystals was already observed and 

was attributed to the flexibility of the crystal framework.[33, 34] 
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Figure 28. Feed pressure drop normalized by the pressure gradient across the ice crystal.  

 

The increase in the pressure gradient across the ice crystals predictably enhances the helium 

flow rate (Figure 28). However, the helium flow rate diminishes significantly with increasing 

temperature, which is not expected in diffusion processes, such as diffusion of trace gases in 

hexagonal ice.[64, 65] This behaviour may be associated with a temperature effect in the 

stability of the ice crystal phase (Figure 29). 

 
Figure 29. Temperature effect of the ice Ih permeability towards helium. Pressure drop in the feed gas 

chamber.  
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We then studied the permeation of other gas compounds through ice (Figure 30). Interestingly 

the flow rate diminishes with increasing temperature until a critical value is reached, above 

which the compound does not permeate. 

 
Figure 30. Ice Ih selectivity of argon, methane, nitrogen, oxygen and hydrogen, relative to helium.  

 

Almost all binary combinations of gas species investigated can be potentially separated at a 

certain temperature. Oxygen and nitrogen, however, present an overlapping exclusion 

temperature, whereas the helium/hydrogen pair involves critical temperatures above the studied 

range. The critical temperatures do not correlate completely with the kinetic diameters of the 

gas species (Table 3). 

Table 3. Kinetic diameters and excluding temperatures of the gas compounds. 

 Kinetic diameters (Å) Gas excluding temperature (K) 

Helium 2.60 > 195 

Hydrogen 2.89 > 195 

Oxygen 3.46 195 

Nitrogen 3.64 195 

Methane 3.80 180 

Argon 3.40 175 
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Anisotropic molecules seem to behave as being slightly “smaller” than expected from the 

kinetic diameters, probably because they become partially aligned inside the nanochannels. We 

have already observed this behaviour in the permeation through dipeptide microporous 

crystals.[33] In addition, we also investigated the temperature effect on ice structure by single-

crystal X-ray diffraction. It has already been observed that above 100 K there is a residual 

thermal expansion, virtually isotropic, of powdered ice Ih.[66] Hexagonal ice confined to 0.1 

mm capillary tubes exhibits, in the 150–240 K temperature range, a slight decrease in the a 

crystal lattice (4.5167(15) Å @150 K to 4.492(4) Å @240 K, uncertainties in parenthesis) and 

an increase in the c crystal lattice (7.290(3) Å @150 K to 7.335(7) Å @240 K). Overall, there is 

a negative thermal expansion of the cell volume (128.79(8) Å3 @150 K to 128.16(19) Å3 @240 

K) as it was formerly obtained by Dantl (1962) by single crystal experiments.[67] Accordingly, 

there is a small contraction of the hexagonal ice rings which can hardly explain the magnitude 

of the temperature effect in the gas flow rates (Figure 31). 

 

 

Figure 31. Ice Ih hexagonal ring dimensions at (a) 150 K; (b) 195 K; and (c) 240 K.  

 
The increase in thermal motion of the oxygen atoms is probably more decisive. Figure 32 shows 

the thermal ellipsoids of the oxygen atoms at 150 K, 195 K and 240 K of ice formed inside 0.1 

mm capillaries. High-resolution neutron diffraction studies of ice Ih had already shown an 

increase in the average thermal displacement of O atoms from 0.118 Å @66 K to 0.208 Å @223 

K rmsd.[68] The increase with temperature of O thermal motion is also correlated with a 

decrease of the ice crystal structure stability. It is possible that when reaching a given 

temperature, the gas molecules interact with the ice structure, blocking the flow through. 

However, we checked that the flux is re-established after replacing a non-permeating gas by 

helium. 
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Figure 32. Thermal ellipsoids of the oxygen atoms of ice Ih crystal structures formed inside 0.1 mm 

capillaries at 150 K, 195 K and 240 K (from light to dark grey respectively). The three ellipsoids are 

shown at the same probability level.  

 

The mass transport through the ice structure is considerably fast. The helium flow rate through 

the hexagonal ice columns is approximately as fast as the flux through the permanent 

nanochannels of the L-valyl-L-isoleucine (VI) crystals.[33] The estimated VI nanochannels 

diameter stands between 3.0 and 3.7 Å depending on the determination method.[34] The high 

flow rates through the channels reflect the negligible tortuosity of the hexagonal columns and 

the high flexibility of the ice framework. In addition to this, the almost unbeatable pore density 

of the Ih crystalline form results in very high permeabilities. Ice phase transitions and ice–gas 

interactions (gas hydrate stability and gas diffusion mechanisms) are deeply investigated but 

poorly understood. Nevertheless, our results are intriguing in light of the global perspective in 

the field. The ice Ic–ice Ih transition temperature is located between 160 K and 205 K [69] and 

the reasons behind such variability are not yet clear. However we are confident, based on the X-

ray diffraction data, that by slowly decreasing the temperature of water inside capillary tubes at 

atmospheric pressure, the hexagonal form is maintained down to 150 K. Gas molecules with 

molecular dimension lower than 0.9 nm can be incorporated in water crystalline inclusions—

known as clathrate hydrates. Most hydrates belong to three structural families, two cubic forms 

and one hexagonal form.[70-73] All the gas species used in this work are described as being 

among the ones known to form clathrate-like structures.[69, 74, 75] The mechanism of 

dissociation of clathrate hydrates is still not well understood. Some clathrate hydrates show self-

preservation behaviour, even outside the zone of thermodynamic stability of the hydrate that is 

dependent on the type of the guest molecule.[74-77] Guest molecules can impose variations in 

the lattice constants of the hydrate structure and induce a significant weakening of the host 

structure.[78] Temperature transition to a non-permeable behaviour towards gases is very 

drastic (Figure 30). As mentioned above, this may be related to the formation of a new ice phase 

where the guest molecules become trapped. A similar mechanism was already proposed to the 

dissociation behaviour of clathrate hydrates in the 180–220 K range.[72] Unfortunately, 

diffusion measurements of trace gases in ice are scarce and sometimes contradictory.  
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Molecular dynamics simulation studies are more frequent but the understanding of the diffusion 

mechanisms remains poorly understood. Ikeda-Fukazawa et al. [79-81] argued that small apolar 

guest molecule, such as He, Ne, Ar or H2, diffuse without distorting the ice lattice while large 

molecules, such as O2, N2, CO2 and CH4, diffuse by a bond-breaking mechanism. However, 

Demurov and colleagues [82] reported molecular dynamic simulations of CO2 through defect-

free hexagonal ice at 200 K and observed no evidence of diffusion. Alavi and Ripmeester [74] 

on the other hand showed that H2 can diffuse out of the hydrates through the hexagonal rings, or 

even through the smaller pentagonal rings. Mitlin et al. [83] argued that Xe can easily penetrate 

the ice hexagonal structure by a mechanism of adsorption and induced crystal disorder. Peters et 

al. [84] observed that methane does not fit through the six membered ring without distortion, so 

one hydrogen bond in the water ring must break at a transition state. Ballenegger and colleagues 

[85] showed that formaldehyde diffuses predominantly through a bond-braking mechanism of 

the ice structure. Here we show that H2, O2, N2, CH4 and Ar can diffuse through the hexagonal 

ice structure. Diffusion of these compounds was already predicted theoretically by other authors. 

[86] However, we cannot ascertain whether defects in the crystal matrix or local disorder 

induced by guest species are relevant or not for the diffusion mechanism. We tried to obtain gas 

sorption equilibrium data to corroborate our findings but without success. The hexagonal ice 

sample size (around 7 × 10-3
µL) is too small to measure gas sorption uptake. Nevertheless, 

adsorption isotherms of light gases, such as H2, N2 and CO2 in hexagonal ice, were already 

reported in the literature.[87, 88] 
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Conclusions 

Ice was already used as a chromatographic stationary phase to separate enantiomers.[89] Here, 

we have shown that hexagonal ice may be used as a molecular sieve to separate light gases with 

commercial value. Despite the high selectivities and permeabilities, the practical use of ice for 

gas separations is certainly limited by low stability of the ice structure and low operating 

temperatures. Nevertheless, our results have a long-term interest as they will motivate the search 

for other compounds that solidify at higher temperatures into similar but more stable crystalline 

structures. The possibility of easy scale-up into polycrystalline membranes with exceptional 

performance certainly looks very promising. 
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Abstract  

 

Molecular self-assembly is a process ubiquitous in nature that refers to the spontaneous 

assembly of molecules in order to generate supramolecular structures through noncovalent 

interactions. Such a natural mechanism can be mimicked to modulate the fabrication of novel 

materials. The secret underlying the production of successful self-assembled materials lies on 

the careful selection of its building blocks. Control over the final architecture may be achieved 

by adjusting the size, shape and surface chemistry of these building blocks. Peptides are 

promising candidates as monomers for self-assembly, in part, due to the variety of amino acids 

which comprise different chemical functionalities. Such chemical diversity allows a myriad of 

interactions to take place, such as hydrogen bonding, hydrophobic effects or electrostatic 

interactions. In addition to design versatility, an increasing understanding of protein and peptide 

folding mechanisms allows the rational design of the monomer and its final assembly. Peptides 

have great potential for biomedical applications due to their inherent biocompatibility and 

biodegradability. In fact, self-assembled peptide-based biomaterials have been developed for the 

production of 3D scaffolds for tissue repair and regeneration and therapeutic drug delivery. 

Since peptides are bioactive molecules, its applications may go far beyond the fabrication of 

inactive architectures. Inherently functional materials may also be produced. In this review, we 

explore the different strategies adopted by scientists in the fabrication of peptide-based self-

assembled biomaterials and provide a comprehensive overview of the mechanisms governing it.  

 

Keywords: Beta-sheet, Biomaterials, Coiled-coil, Peptides, Self-assembly, Supramolecular 

Chemistry, Therapeutics 
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As mentioned earlier, peptide-based materials explored so far are mostly based on either β-

structured peptides or α-helical building blocks. A greater number of studies have concentrated 

on peptides folding into β-sheets, possibly as a result of the high research activity on amyloid-

like structures. Nonetheless, α-helical folding has recently been receiving increasing attention 

due to the set of well-defined rules that have been established for this assembly, enabling a 

rational design of assemblies. 

Alpha-helices 

Alpha-helices are key secondary structures of natural proteins with right-handed spiral 

conformation and repeated backbone torsion angles that lead to the formation of helices with 3.6 

residues per turn. The internal backbone hydrogen bonding follows a regular i, i+4 pattern 

(COi 
. . . NHi+4). In some proteins, α-helices pack together increasing their stability, forming a 

supercoil. [90] This assembly is favoured by hydrophobic and van der Waals’ interactions of the 

nonpolar residues within the core of the supercoil, leaving the polar residues exposed to the 

aqueous environment. A particularly well studied and abundant α-helix-based structural motif is 

the coiled coil, in which the α-helix is frequently characterised by a seven-residue repeating unit 

of alternating hydrophobic and hydrophilic residues, often denoted as (abcdefg)n.[91-97] A 

coiled coil containing two α-helices is illustrated in Figure 33. 

 

 

Figure 33. Schematic representation of a two-stranded coiled coil viewed from the top. Hydrophobic 

interactions take place within the core residues (a and d) whereas electrostatic interactions occur between 

proximal residues (e and g). 

 

The study of naturally occurring coiled coils, such as the leucine zipper, led to the recognition of 

sequence requirements for the assembly of these structures.[98] A generally accepted rule for 

coiled coil formation is the positioning of hydrophobic (H) and polar (P) amino acid within the 

heptad sequence in the following order (HPPHPPP)n.  
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The positions a and d; that form the core of the structure, need to be hydrophobic, in order to 

allow interaction between the helices. In addition, it has been reported that the introduction of 

charged residues at positions g and e (such as K and E) leads to the assembly of a two-stranded 

coiled coil by promoting inter-helical electrostatic interactions.[99] Such ionic bonds can be 

used as triggers for promoting self-assembly by simple adjustment of pH. An interesting 

example of a rationally designed responsive material was proposed by Zimenkov et al. who 

synthesized a peptide containing histidine residues at position d of the heptad sequence, 

resulting on the formation of fibers as a response to pH variation.[100]  

The selection of amino acids at positions b, c and f of the heptad sequence, the group of amino 

acids exposed on the surface of the coiled coils, has also been a target of research and its 

influence of final assembly investigated. It has been reported that these positions have an 

influence on fibril thickness, with positively charged residues generating long and narrow 

(diameters of ∼4 nm) nanofibers, which provides evidence to the importance of these group of 

amino acids to inter-fibril interactions.[101] In another publication, researchers designed a 

temperature responsive material by changing the amino acids at this same peripheral region, 

resulting in self-assembling hydrogels.[91] The authors’ starting point was a peptide sequence 

known to self-assemble into fibers (SAFs8). In one case the authors’ have incorporated alanine, 

to promote hydrophobic interactions between fibrils, and on the other, glutamine was chosen, 

given its propensity to foster hydrogen bonding. In both cases physical hydrogels were obtained, 

with the particularity that glutamine-based gels were formed at low temperature in contrast to 

the alanine-based gels that were achieved at high temperature. The resulting hydrogels were 

able to support both growth and differentiation of rat adrenal pheochromocytoma cells for 

sustained periods in culture, which is evidence to the biomedical potential of such peptide-based 

materials. 

Peptide self-assembling structures have shown great potential for applications in regenerative 

medicine, as well as towards the development of new therapeutic delivery systems.[102] 

Improving the efficacy of therapeutic drugs can involve the development of drug delivery 

systems, designed to administer drugs to a specific target in a controlled fashion. Undesirable 

side-effects of systemically administered drugs may occur due to their uptake by healthy cells, 

which coupled with short circulation half-lives leads to the high concentrations requirements to 

reach the target cells at therapeutic levels. The ideal carrier should therefore be able to 

effectively entrap the drug, direct it to pathological cells, tissues or organs and controllably 

release its content.  Applications of self-assembling peptides as carriers for drug delivery will be 

presented hereby. 
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Many therapeutic drugs are hydrophobic, which limits the amount of drug that may be present 

in systemic circulation, and therefore restricts its final application. The development of systems 

capable of incorporating hydrophobic molecules is thus of great value.  

Coiled coils have the potential to carry hydrophobic drugs due to their inner hydrophobic core, 

as was shown by Eriksson et al. who studied the potential of loading cisplatin, a hydrophobic 

chemotherapeutic drug, into a protein from archaebacterium Staphylothermus marinus forming 

a right-handed coiled coil (RHCC).[103] The RHCC had been previously shown to encompass 

four hydrophobic cavities, which may be the spots where the incorporation of the hydrophobic 

drug takes place. The authors have shown that RHCC containing the drug was able to bind and 

enter cells in vitro, suggesting an aptitude for drug delivery.  

In a recent work by More et al. a supercharged coiled coil structure protein (CSP) was 

engineered and successfully employed for gene therapy, by non-covalently biding the coiled 

coil to plasmid DNA and encapsulating it in a liposome, forming complexes which the authors 

have named as lipoproteoplexes.[104] The original cartilage oligomeric matrix protein coiled-

coil (COMPcc) was modified at positions b and c of the heptad repeat, by replacing them with 

arginine residues that convey the positive charges needed for facilitating ionic bonding with the 

negatively charged DNA. Surprisingly this supercharging of the protein did not significantly 

affect its structure.  

Another inventive study proposed the application of a heterodimer coiled coil to promote the 

fabrication of a drug-polymer conjugate.[105] The authors accomplished this by covalently 

binding one helix to the carrier polymer and the other complementary helix to the drug, 

obtaining in this way the polymer-drug conjugate. 

The set of rules that have been established for the assembly of coiled coils enable the rational 

design for the production of new building blocks capable of self-assembling.   

Beta sheets 

The other common secondary structure of proteins is the beta-sheet, formed by assembly of 

beta-strands in a parallel or anti-parallel fashion, driven by hydrogen bonds. Much like the 

alpha-helix, beta-sheets can be made amphiphilic to facilitate the creation of design guidelines. 

In the latter, a HPHPHP pattern has been recognized as beta-sheet prone, where the hydrophobic 

and hydrophilic residues stand on opposite sides of the beta-sheet. While studying a zuotin 

protein fragment, AEAEAKAKAEAEAKAK , Zhang et al. found that addition of salt led to the 

spontaneous generation of assemblies that formed a stable macroscopic membrane.[106] The 

alternating cationic, hydrophobic and anionic residues are positioned on opposite sides of the 

formed beta-strand.  
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Adopting the same sequence pattern, many other peptides were designed and a great number of 

successful assemblies was achieved.[107] One of such assemblies, RADA16, is now marketed, 

primarily for research purposes, under the commercial name of PuraMatrix™. Several studies 

have employed these hydrogels for cell culture, demonstrating its potential for tissue 

engineering applications. [108-110]  

The mechanical properties of the final assembly are a function of length and hydrophobicity of 

the peptide building block. In a systematic study performed by Caplan et al., the effect of 

certain monomer aspects on the shear moduli of the attained gel was assessed. The authors 

found that increased hydrogel rigidity may be achieved by simply increasing peptide 

length.[111] The potential of applying the RADA16 hydrogel as a carrier for controlled drug 

release was investigated by Nagai et al. through the quantification of the diffusion of different 

molecules.[112] Their results showed that release kinetics is not only dependent on the structure 

and charge of the diffusant but also on the peptide concentration in the hydrogel. They point out 

that the interaction of the drugs with the nanofibers might also play an important role, which can 

lead to tailor-made structures for drug release. By introducing a phenylalanine residue on the 

RADA16 sequence, Zhao et al. intentionally created a motif for interaction with hydrophobic 

drugs.[113] The research group investigated two peptide sequences, RADAF1 and RADAF2, 

similar except for the phenylalanine residue, which in one case is positioned in the centre 

(RADAF1) and in the other closer to the terminus (RADAF2) of the peptide sequence. Self-

assembly resulted in twisted and flat β-sheet nanofibers, as examined by AFM and FTIR. This 

study revealed how such a small difference in spatial disposition of an amino acid can induce a 

surprising disparity on the assembly mechanism and on final hydrogel characteristics. 

Furthermore, the hydrogels were shown to entrap molecules containing the phenyl group, 

apparently by π- π interaction, providing another ground evidence of the potential of these 

materials for drug delivery. The release of larger molecules, such as proteins and cytokines has 

also been tested.[109] Koutsopoulos et al. encapsulated proteins of different sizes and 

isoelectric points within the Ac-(RADA)4-CONH2 peptide hydrogel.[114] They found, 

corroborating the results of the previously mentioned paper that release kinetics was essentially 

a function of the size of the protein and hydrogel mesh. Noteworthy is also the fact that proteins 

encapsulated within the hydrogel were released while maintaining their conformation and 

functionality. The same investigators studied the release kinetics of human immunoglobulin 

(IgG) through a two-layered hydrogel system consisting of concentric spheres of a ac-(RADA)4-

CONH2 core and a ac-(KLDL)3-CONH2 shell of self-assembling peptides.[115] This two-

layered system allowed 100% encapsulation efficiency, while providing the means for slow and 

controlled in vitro release of structural and functional IgG for more than 3 months. 
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An inventive design was reported by Schneider et al. who synthesized a peptide, MAX1, to 

adopt a beta-hairpin secondary structure in response to pH switch.[116] This was accomplished 

by introducing a tetrapeptide (-VDPPT-), which favours a type II’ turn structure, in the middle of 

lysines intercalated with valines residues, known to have a great propensity for beta-sheet 

generation. It is interesting to notice that the sequence does not contain negatively charged 

residues, as opposed to previously produced beta-sheet hydrogels.  

The authors describe the pH responsive behaviour of the formed structure in terms of global 

charges. When pH is below the pKa of constituting lysines, they become charged causing 

repulsion between them and subsequently unfolding. 

MAX1 alongside a derivative peptide, MAX8, which also self-assembles to form a hydrogel, 

were used for encapsulation and release studies of model FTIC-dextran macromolecules.[117] 

The study determined that the charge of the peptide network has an influence on the release 

kinetics. Furthermore, tuning of mesh size of the formed hydrogel can help regulate release. 

According to the authors, a controlled release of up to a month is achievable. MAX8 peptide has 

also been applied to modulate the release of curcumin, a hydrophobic drug with anti-

tumorigenic properties.[118] The physical hydrogels proved to be an efficient vehicle and the 

kinetics of release could be controlled by modulation of peptide concentration. 

An amphiphilic peptide was designed by Ruan et al., composed of 9 residues 

(PSFCFKFEP).[119] The peptide was shown to self-assemble into beta-sheets and beta-turn, 

according to circular dichroism (CD) spectra analysis. It forms a hydrogel at high peptide 

concentrations, capable of encapsulating and slowly releasing a hydrophobic model drug, 

pyrene. 

An interesting approach to the construction of drug delivery vehicles based on peptide self-

assembly has recently arisen by Marchesan and co-workers.[120] The group incorporates an 

antibiotic, ciprofloxacin, into a tripeptide (DLeu-Phe-Phe) and self-assembly results in a 

hydrogel. Curiously, the drug itself participates on scaffold formation by interacting with the 

peptide. This new approach could give rise to the development of tailor-made delivery systems. 

Peptide Amphiphiles  

Peptide amphiphiles, PAs, are a particularly versatile class of peptide monomers for self-

assembly. They consist of a hydrophobic tail and a hydrophilic head, constituted much in the 

same way as the previously described phospholipids, and have the ability to undergo dynamic 

self-assembly forming a large variety of nanofibers. The hydrophobic domain usually entails of 

an alkyl chain, but in some cases can involve a hydrophobic polymer or a peptide sequence of 

nonpolar amino acids. Cui et al. have described the PA as a molecule composed of 4 structural 

regions. The already mentioned hydrophobic portion is represented on region 1.[121]  
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According to the division provided by the authors, region 2 contains the beta-sheet forming 

peptide sequence, whereas region 3 and 4 represent the charged amino acids and bioactive 

peptides, respectively. On the scheme presented by Hartgerink and co-workers, shown in Figure 

34, an additional region is incorporated to allow a greater flexibility of the active peptides at the 

surface of the structure. In the example below, Hartgerink and co-workers functionalized the PA 

with the well-known cell adhesion ligand RGD.[122]  

 

 
Figure 34. Scheme representing a peptide amphiphile (PA) and the basic design principles underlying its 

construction. (A) Chemical structure of the peptide amphiphile with depiction of each structural region. 

(B) Molecular model of the PA. (C) Self-assembly of PA molecules leads to a cylindrical micelle. 

Reprinted from Hartgerink with AAAS permission[122] 

 

Van Hell et al. has reported the design of several peptide amphiphiles, self-assembling into 

vesicles of low polydispersity at neutral or basic pH.[136] The PA were built exclusively from 

peptides, both the hydrophilic head as well as the hydrophobic tail, containing different ratios of 

hydrophobic to hydrophilic residues, resulting in no clear impact on the vesicle morphology and 

size. The vesicles were shown to encapsulate hydrophilic molecules, which is indicative of its 

potential use for drug delivery. 
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Recently, a pH-responsive peptide amphiphile was shown to self-assemble into spherical 

micelles.[137] The hydrophobic tail was designed to hold six valine residues and the 

hydrophilic chain was the KKGRGDS sequence. The authors have successfully entrapped 

doxorubicin, an antineoplastic drug, within the micelles, which are able to dissociate at low pH. 

This provides yet another evidence of the potential applications of these stimuli-responsive 

systems. Other successful drug carriers have been created by applying the same PAs design 

principles previously described, although in most cases the hydrophobic tail is composed of 

alkyl chains. [138-141] 

 

The particular role of hydrophobic and aromatic interactions on gelation  

Aromatic interactions have long been recognized as significant to the self-assembly process in 

supramolecular chemistry. [142] The attractive nonbonding interaction between π-electrons in 

aromatic rings, named π- π interactions or π−stacking, is also present in nature, such as in the 

stacking of nucleotide bases in DNA [6] and has been suggested to facilitate amyloid fiber 

formation. [3, 143] Whether this self-assembly is strictly a result of interaction between the 

aromatic groups or a sum of cooperative contributions is still a matter of controversy. In an 

effort to shed light onto the debate, several studies evaluating the effects of replacing aromatic 

moieties with nonaromatic groups in self-assembling peptide sequences have been reported. 

Takto et al. replaced phenylalanine (F) residues with its nonaromatic and more hydrophobic 

form, cyclohexylalanine (Cha), in a 12 residue β-hairpin peptide, resulting in a reduced 

propensity to self-assemble.[144] Such results suggest a correlation between the presence of 

aromatic groups in the molecular subunit and its self-assembly ability. However, in a different 

study by Bowerman et al. the replacement of F with Cha in the peptide amphiphile (FKFE)2 was 

shown to improve hydrogelation properties.[145] These two studies illustrate the distinct 

outcomes while performing similar experiments and prompt us to assume that a complex set of 

parameters may influence the overall interactions and self-assembly, which cannot be confined 

to simply one type of interaction. It appears to exist a lack of consensus on the true role of 

aromatic interactions in self-assembling mechanisms due to contradicting results, nonetheless, it 

is clear that many gelators hold aromatic moieties. 

Peptide-based low-molecular-weight gelators (LMWGs) are small molecules that self-assemble 

in water forming fibrous structures that arrange themselves into three dimensional networks, 

originating a hydrogel. [146] Several reports have emerged on LMWGs composed of dipeptides 

or tripeptides bonded to large aromatic groups such as fluorenylmethoxycarbonyl (Fmoc), 

naphthalene, pyrene and spiropyran, depicted in Figure 35, perhaps a reflection of the 

propensity of these aromatic groups to induce gelation.[146-154]  
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Figure 35. Structural formulae of Fmoc (F), pyrene (P) and naftalene (N) and spiropyran (S). 

 

In fact, Ma and co-workers have studied the potential of producing hydrogelators by binding the 

large aromatic groups, such as Fmoc, pyrene and naftalene, to random pentapeptide sequences. 

Of the 18 peptide derivatives synthesized, 12 resulted in efficient gelators, supporting 

hypothesis of the importance of aromatic interactions for self-assembly.[155] 

Although ground-breaking rules and strategies for the formation of effective gelators are 

continuously revealed, designing self-assembling molecules from first principle is still challenge. 

 

Epitopes 

In view of the several physiological roles peptides play, it is not surprising that production of 

peptide-based materials that not only constitute a structural platform, but also convey specific 

biological activities, has spurred. The implementation of such functional motifs may have 

applications into drug delivery by allowing the targeted transport of the vehicle to the specific 

cell, tissue or organ in need of therapeutic action. It may also find applications into basic 

research on cells interaction with biological molecules. Widely employed peptide motifs include 

the above mentioned small cell recognition sequence, RGD, which was primarily identified as a 

minimal essential cell adhesion peptide sequence in fibronectin, and is currently employed in 

several biomaterials for promoting cell adhesion into tissue engineering applications.[123-131] 

The laminin-derived sequence, IKVAV, is a promoter of rapid differentiation of neural 

progenitor cells into neurons, and has also been incorporated into biomaterials. [132, 133] The 

immobilization of bioactive peptide entities to structural architectures leads to the fabrication of 

a new class of smart functional materials. [134, 135]  
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III.2. Antimicrobial Self-assembled Peptide 

hydrogel with wound healing properties 
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Abstract  

 

Nitric oxide is an endogenously produced molecule which is implicated in several wound 

healing mechanisms. Its topical delivery may improve healing in acute or chronic wounds. In 

this study we synthesized an antimicrobial peptide which self-assembled upon a pH shift, 

forming a hydrogel. The peptide was chemically functionalized to incorporate an NO-donor 

moiety on the lysine residues. Extent of reaction was measured by the ninhydrin assay and the 

NO-release rate was quantified via Griess reaction method. The resulting compound was 

evaluated for its antimicrobial activity against Escherichia coli and its effect on collagen 

production by fibroblasts was assessed. 
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Introduction 

NO and wound healing 

Nitric oxide (NO) is an important biosignalling molecule with regulatory functions in the 

cardiovascular, immune and central and peripheral nervous systems. Its synthesis is catalysed 

by NO synthase (NOS), an enzyme known to exist in three distinct isoforms: neuronal (nNOS), 

endothelial (eNOS) and inducible (iNOS).[156] In general, they are thought to catalyse the 

oxidation of L-Arginine to L-citrulline and NO, although it is still a matter of debate whether 

NO or reactive nitrogen species (RNS) are the actual product of reaction. Regardless, all 

isoforms are expressed in skin tissue, even if in different cell types. Both nNOS and eNOS are 

constitutively active, via a calcium-dependent pathway, and generate low concentrations of NO 

(in the nM range), while iNOS is activated in inflammatory conditions, releasing higher NO 

concentrations (in µM range).[157] 

Different studies have suggested that nitric oxide synthesis is correlated to the successful 

outcome of wound healing. In a study by Shaffer et al., the authors administered a competitive 

inhibitor of NOS – S-methyl isothiouronium – to mice with a dorsal skin incision. They 

observed a reduction of nitrite/nitrate concentration – the oxidation products of NO – in the 

wound fluid, which was dependant on the concentration of NOS inhibitor administered. A 

concomitant decrease in collagen accumulation and wound breaking strength was also 

reported.[158] Yamasaki and co-workers compared wound closure in inducible nitric oxide 

synthase (iNOS) knockout mice with wildtype animals.[159] They observed a 31% delay on 

time required for wound closure in the knockout mice, which was reversed by application of an 

adenoviral vector containing human iNOS cDNA.[159] Endothelial NOS has also been shown 

to play a critical role in wound healing mechanisms. A study of an excisional wound repair in 

eNOS knockout mice resulted in a delayed wound closure time when compared with wildtype 

controls, as well as decreased incisional wound tensile strength. [160] Results also suggest an 

abnormal angiogenic process as a result of eNOS deficiency. NO has been described to promote 

angiogenesis by several mechanisms, such as enhancing endothelial cell proliferation and 

migration, increasing the expression of vascular endothelial growth factor (VEGF) and acting as 

a vasodilator.[161] Thus, NO deficient wounds may lack the capillary network that would allow 

the appropriate transportation of oxygen and nutrients and the removal of waste products.  

Altogether, their results provide evidence to the critical role that NOSs play in the wound 

healing process. 
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It has also been shown that wounds of diabetic-induced rats, with the characteristic defective 

healing, are accompanied by a decrease of NO products in wound fluid.[162] To counteract this 

reduction of NO synthesis, a research group purposed the supplementation of diabetic-induced 

rats’ diet with L-arginine, the main substrate of NOS. Their study revealed that increasing L-

arginine in the animals’ diet was able to, at least partially, restore NO production to normal 

levels and improve wound healing.[163] 

Given that impaired wound healing has been associated with the reduced availability of NO, it 

is reasonable to expect that exogenous sources of NO might be a therapeutic option for 

improving wound healing. Studies employing NO-releasing materials have shown promising 

results in improving wound repair.[164-166] 

NO donors 

Nitric Oxide has been shown to be an important mediator in many biological processes and has 

the potential to function as a therapeutic agent. However, NO is a free radical and a highly 

reactive specie, greatly limiting its action radius. In order to prevent unwanted reactions to take 

place before NO reaches the site of action, NO donor drugs, that help stabilize the NO molecule, 

are being developed.  

NO-releasing drugs currently used in clinical practice, mostly belong to the organic nitric 

category, which encompasses nitroglycerin (GTN) and isosorbide mononitrate (ISMN), 

employed in the treatment of angina. However, these have been reported to lead to the 

development of tolerance with prolonged continuous use.[167] Other NO-releasing drugs used 

clinically include sodium nitroprusside (SNP), which is applied in hypertensive crises for an 

immediate reduction of blood pressure. Since this molecule is broken down by hemoglobin into 

cyanide, its administration encompasses the risk of cyanide poisoning.[168] Currently, NO 

donor drugs belonging to the S-nitrosothiols and Diazeniumdiolates classes are settling in as 

promising therapeutic agents. [169, 170] 

S-nitrosothiols are compounds with the generic structure RSNO, where a thiol group (R-SH) is 

bound to the NO moiety.[171] Although they are not yet used in clinical practice, S-

nitrosothiols are widely studied. The systemic administration of S-nitroso-glutathione (GSNO) 

to rats,  revealed an increased collagen deposition at wound sites.[172] GSNO has also been 

topically administered, by application of a hydrogel containing the NO donor, to the wound bed 

of rats, resulting in accelerated wound closure and re-epithelialization.[173] The same 

procedure was implemented to ischaemic wounds, where a faster wound contraction and re-

epithelisation as well as an increase in collagen fiber density and organization were observed in 

GSNO-treated animals when compared to control group.[174]  
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Both local and systemic administration of these components, appear to result in significant 

improvements of certain parameters of the wound healing process. 

N-Diazeniumdiolate or NONOates, are another promising class of NO donor drugs which are 

known to decompose spontaneously in solutions at physiological pH and temperature, giving 

rise to two molar equivalents of NO.[175, 176] Its structural formula is depicted in Figure 36, 

where the diazeniumdiolate moiety [N(O-)N=O] is bound to the nucleophile (primary or 

secondary amine). An extensive library of NONOates has been synthesized with half-lives that 

range from seconds to hours. [177]  

 

Figure 36. N-Diazeniumdiolate (NONOate) structural formula where the nucleophile is a secondary 

amine. In the case of primary amines one of the R should be a hydrogen atom. 

NO donors from primary amines 

West et al. developed nitric oxide releasing hydrogels using different approaches, including the 

interesting exploitation of poly-L-lysine for the formation of NO adducts.[178] To the best of 

our knowledge, this was the first report on a primary amine-based NO releasing material. The 

authors first incorporated poly-L-lysine (Degree of Polymerization=5) into poly(ethylene 

glycol) (PEG) which was then dissolved in water and reacted with NO gas to produce PEG-

Lys5-NO. The NO donor developed was thereafter combined into photopolymerizable PEG 

hydrogels to obtain the desired material. The resulting PEG-Lys5-NO hydrogels were shown to 

reduce smooth muscle cell proliferation and platelet adhesion, which may be useful in the 

development of coatings to prevent thrombosis and restenosis. 

Several other NO-releasing materials were since developed adopting a similar strategy, i.e., by 

the incorporation of primary amines into polymeric materials for NO adduct formation.[179-

186] Poly(vinyl alcohol) (PVA), for instance, was modified with amine groups to allow NO 

charging. [181] The PVA-NO hydrogels were tested on full-thickness wounds created in the 

dorsal skin of genetically-modified diabetic mice, resulting on the increase of granulation and 

scar tissue thickness, when compared to controls. Such results evidence the modulating role of 

NO in the complex wound healing process.  
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Polyurethane has also been modified by the incorporation of a peptide, namely through reaction 

with hydroxyl groups of serine residues in a peptide containing lysine in its sequence. [179] On 

the basis of previous evidence of anti-thrombogenic properties of NO, the authors evaluated the 

potential of application of this material into small-diameter vascular grafts. The resulting 

material presented suitable mechanical properties, while inhibiting platelet adhesion and smooth 

muscle cell proliferation and increasing endothelialisation. 

 

The reports on the successful production of NO nucleophile complexes derived from primary 

amines and its role on the modulation of wound healing, spurred us to envisage the formation of 

an NO-releasing wound dressing derived from a self-assembling peptide hydrogel. 

Antimicrobial Peptide – MSI-78 

We decided to work with an antimicrobial peptide so as to promote a reduction of infection at 

the wound site. Among the countless known antimicrobial peptides, we selected MSI-78, also 

known as pexiganan, because of its particularly hydrophobic and aromatic-rich peptide 

sequence, which according to research confers a greater likelihood for self-assembly.[142-155] 

The peptide was furthermore bound to an aromatic group – Fmoc – at the N-terminal, in an 

effort to promote self-assembly.  

MSI-78, with the peptide sequence GIGKFLKKAKKFGKAFVKILKK, is an antimicrobial 

peptide with a broad spectrum of antimicrobial activity against Gram-positive and Gram-

negative aerobes and anaerobes, and is thought to act by disturbing the permeability of the cell 

membrane or cell wall.[187] It was under development as a topical agent for the treatment of 

diabetic foot ulcer (DFU) but failed to obtain approval by the United States food and drug 

administration (FDA) on the grounds that efficacy was not superior to already approved 

treatments of DFU.  

Foot ulcers are a common complication of diabetes mellitus, in fact, around 15% of diabetic 

patients will go on to develop foot ulcers and a staggering 15-20% of such DFU suffering 

patients will require an amputation as a consequence of severe infection or peripheral ischemia. 

[188-190] DFU is an example of a chronic wound, which is a major health problem that not 

only severely reduces quality of life to patients and families, but also imparts a great burden on 

healthcare systems. 

Wound dressings are a valuable part of chronic wound treatment and should be designed to 

remove exudates, prevent infection and foster healing. Among the several available wound 

dressings, hydrogels have the advantage of providing a moist environment while allowing 

gaseous exchange.  
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A recently published review, gathered and summarized the results of randomized controlled 

trials that compared the effects on ulcer healing of hydrogel with alternative wound 

dressings.[191]  

The authors concluded that there is some evidence of a greater healing capacity of hydrogels 

when compared to basic wound contact dressings. However, when applying a hydrogel based 

dressing there are greater concerns on possible bacterial growth due to the moist 

environment.[192, 193]  

Producing a hydrogel composed of antimicrobial peptides would provide an increased 

advantage by inhibiting the growth of microorganisms within the wound bed, therefore reducing 

the risk of infection. 

Hypothesis 

Our hypothesis relies on the association of complementary effects from the antimicrobial 

hydrogel –providing moist to the wound bed and allowing nutrients and gases to diffuse through, 

while reducing the risk of infection – and the ability to locally release exogenous NO in a 

controlled manner, improving wound healing.  

Accordingly, an antimicrobial peptide was synthesized and gelified through a pH switch. 

Following, the peptide was modified by incorporation of an NO donor molecule. The resulting 

functionalized peptide was studied for its ability to release NO. As a preliminary evaluation of 

the formulated hypothesis, the antimicrobial activity of the functionalized peptide and its effect 

on collagen production by fibroblasts were studied. 
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Materials and Methods 

Peptide Synthesis 

 
Fmoc-Pexiganan (Fmoc-PXG) and Pexiganan (PXG) were synthesized via both manual and 

automatic solid phase peptide synthesis (SPPS) employing the Fmoc/tBu approach. SPPS is an 

established method of peptide synthesis that follows a series of coupling and deprotection steps 

until completion of peptide sequence. The Fmoc/tBu protecting scheme is an orthogonal system 

with N-protection removal achieved by secondary amines, like piperidine, and tert-butyl-based 

side chain protection removal accomplished by the action of strong acids.[194, 195] 

In the first step of manual SPPS, resin beads (Fmoc-Rink-amide 4-methyl-benzhydrylamine – 

MBHA, 0.38 mmol/g loading, NovaBiochem) were swollen by immersion on dichloromethane 

(DCM, Sigma-Aldrich), washed with N,N-dimethylfomamide (DMF, Sigma-Aldrich). 

Deprotection was achieved by placing the swollen beads in a 20% piperidine solution (Sigma-

Aldrich) for 20 minutes at room temperature, with occasional manual stirring. A 5 molar excess 

of Fmoc-protected amino acid (NovaBiochem) and 2-(1H-benzotriazol-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HBTU, NovaBiochem) and a 10 molar equivalent of 

N-ethyl-N,N-diisopropylethylamine (DIEA) were dissolved in DMF and poured into the 

reaction vessel. Reaction proceeded for one hour at room temperature, with manual stirring. 

Thereafter, new deprotection and coupling cycles were initiated until achieving the final peptide 

sequence. In between reactions the Kaiser test was applied to verify complete coupling or 

deprotection. [196] 

The automated microwave peptide synthesizer enables a dramatic reduction of reaction time by 

employing microwave energy. However, such benefit arises at the cost of increased solvent and 

amino acid consumption. Following the programming of the peptide onto the Liberty-CEM 

software, with special attention placed on the coupling of particular amino acids, all reactants 

and solvents are prepared and placed on the equipment.  

Resin bound peptide was cleaved and side chains-deprotected by treatment with a 

Trifluoroacetic acid, triisopropylsilane and water (TFA/TIS/H2O) solution (95:2.5:2.5), which 

was left reacting for 2 hours at room temperature in an orbital shaker. The solution was filtered 

and the resin rinsed with neat TFA (Sigma-Aldrich). Isolation of peptides was achieved by 

cycles of cold methyl tert-butyl ether (MTBE, Sigma-Aldrich) precipitation and centrifugation. 

After decanting the ether, the peptide was left drying overnight under vacuum in a desiccator.  
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Peptide purification was accomplished in a preparative medium pressure liquid chromatography 

(MPLC) column, packed with octadecyl carbon chain (C18)-bonded silica as the stationary 

phase. A linear gradient elution of different concentrations of acetonitrile (ACN, Sigma-

Aldrich) in aqueous solution with 0.05% TFA was applied as the mobile phase.  

The purified products were analysed by reverse phase high pressure liquid chromatography 

(RP-HPLC) and electrospray ionization mass spectrometry (ESI- MS, Finnigan Surveyor LCQ 

DECA XP MAX). 

Purified peptide solutions were frozen, subsequently lyophilized and the resulting peptide 

powder kept at −20 °C until used. 

PXG was produced by removal of Fmoc group from the N-terminal amino acid prior to cleavage, 

whereas Fmoc-PXG was released from the resin without having carried out such N-terminal 

deprotection step.  

 
Gelation of antimicrobial peptide 
 

Both peptides, PXG and Fmoc-PXG were dissolved in ultrapure water (MilliQ), previously 

filtered through a 0.22 µm pore membrane filter, and an aqueous sodium hydroxide 0.1 M 

solution was added to a final peptide concentration of 2.5 % (w/v). Hydrogel formation was 

confirmed by inversion of the flask. 

Incorporation of NO donor moiety 

Formation of the NO-nucleophile complex 

The reaction procedure to produce N-diazeniumdiolates from primary amines was adapted from 

those published in previous reports.[178, 179]  

The peptide was dissolved in ultrapure water in a glass vial, and an aliquot was collected and 

stored at 4 ºC as control solution for future experiments. The glass vial with the remaining 

peptide solution was then placed in a reaction vessel with a magnetic stir bar, to allow constant 

mixing of the solution, and the reactor was then sealed. Oxygen present within the reactor’s 

atmosphere was minimized and the reactor was tested for eventual leaks. Afterwards, the 

reaction vessel was filled with NO gas (50% in nitrogen) at approximately 2.5 bar and allowed 

to react for approximately 18 hours under constant stirring.  

Following a secure evacuation of NO charged atmosphere, the solution was withdrawn from the 

reaction vessel and samples were collected for characterization and evaluation of the extent of 

conversion of free amines. The remaining solution was frozen at -80ºC overnight and freeze-

dried. 
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A sample of reaction product (Fmoc-PXG/NO) and control (Fmoc-PXG) were simultaneously 

analysed via ninhydrin colorimetric assay to measure the extent of conversion of free amines.  

Extent of reaction: Analysis of NO-nucleophile complex formation 

 

The ninhydrin reagent was developed for the quantitative determination of amino acids by its 

reaction with amino groups, producing the coloured ninhydrin chromophore named 

Ruhemann’s purple (λmax=570 nm; є =22 000 M-1.cm-1).[197, 198] This assay was used as an 

indirect method to quantify the extent of conversion of free amines to NO-nucleophile 

complexes, which has been described as the established methodology for primary amine 

functionalization with NONOates. 

A myriad of different variations of the ninhydrin protocol can be found, however, in this work, 

the optimized protocol that resulted from a systematic study on the effect of different variables 

on the assay was used.[199] 

Ninhydrin solution was made fresh for every experiment and quantities adjusted according to 

the volume required. Briefly, for the preparation of a 10 ml solution, 30 mg of hydrindantin and 

200 mg of ninhydrin were dissolved in 7.5 ml of dimethylsulfoxide (DMSO). Immediately prior 

to analysis 2.5 mL of a 4 M sodium acetate buffer solution at pH 5.2 was added. Unknown 

samples (0.5 ml) and ninhydrin solution (0.5 ml) were added to a screw-capped test tube and 

heated in a boiling water bath for 15 min. After cooling the samples in an ice bath to stop the 

reaction, 2.5 ml of a 50% ethanol solution was added and vigorously mixed. Absorbance was 

monitored at 570 nm (Shimadzu UV-2401 PC). 

Kinetics of NO Release 

There are essentially three methods which are currently employed for measuring NO: 

electrochemistry, chemiluminescence and Griess reaction. Chemiluminescence measures NO 

directly, has a high sensitivity (around 0.5 ppb to 500 ppm NO) and is not easily influenced by 

interfering species. However this systems are highly expensive, and the NO measured is 

dependent on system configuration and flow rate of the carrier gas. Electrochemistry on the 

other hand relies on the detection of NO via its reduction to N2O2
2- or its oxidation to NO3

- 

following current measurement. This method is more affordable than chemiluminescence and 

can be easily miniaturized to allow detection closer to NO source.  However, a lot of biological 

species interfere with the measurements, which forces the coating of electrodes with membranes, 

thereby limiting the methods’ sensitivity.[200] The most popular method of quantification of 

NO, due its simple execution and low price, is the Griess assay which measures NO indirectly 

by quantifying nitrite, NO2
-.  
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The reaction of nitrite with sulfanilamide forms a diazonium salt intermediate that then reacts 

with N-(1-napthyl)ethylenediamine to form an azo dye with a peak absorbance at 548 nm, as 

schematically shown in Figure 37.[200] Under acidic conditions, NO released can be measured 

by spectroscopically monitoring the solution at 548 nm. Due to the inexpensive and accurate 

measurements provided by the Griess method, this was our method of choice to quantify NO 

released from Fmoc-PXG/NO solution. 

Figure 37. Griess reaction scheme. Sulfanilic acid reacts with nitrite to form a diazonium salt 

intermediate that then reacts with N-(1-napthyl)ethylenediamine to form an azo dye with a peak 

absorbance at 548 nm. 

 

Griess reagent was prepared by mixing equal volumes of a solution of N-(1-

naphthyl)ethylenediamine dihydrochloride (1 mg/mL), and a sulfanilic acid (10 mg/mL) 

solution in 5% phosphoric acid. Reaction mixtures were prepared in the following proportions: 

100 µL of Griess Reagent, 300 µL of the nitrite-containing sample and 2.6 mL of deionized 

water. Reaction solutions were allowed to react for 30 min in a light protected environment, at 

room temperature. The solution was pipetted into a 1 cm path length cuvette and absorbance 

was monitored at 548 nm (Shimadzu UV-2401 PC).  

 

 

 

 

 

 

Sulfanilic acid Diazonium N-(1-napthyl)ethylenediamine  

Azo dye 
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Evaluation of antimicrobial properties 

Functionalization of Fmoc-PXG 

A 62 µM aqueous solution of Fmoc-PXG was reacted with NO gas (50% in nitrogen) for 

approximately 18 hours in a closed reaction vessel as previously described.  

Susceptibility Assay 

E. coli (ATCC 25922) was tested by broth microdilution assay, following the procedure 

outlined by the CLSI. [201]   

The initial inoculum was prepared suspending bacteria from a colony onto approximately 50 ml 

of Mueller-Hinton broth (MHB) and incubating for 16 to 24 hours in a thermostatic bath, set to 

37ºC, with orbital shaking.  

Peptide and ampicillin solutions were prepared in two-fold dilutions at twice the final desired 

concentrations. Each solution was pipetted in triplicates into the 96 well plates, according to a 

predefined disposition. The bacterial density of the inoculum was estimated by measuring its 

optical density at 600 nm. It was then diluted in MHB to twice the final desired bacterial 

concentration (5×105 CFU/mL), expressed as colony forming units per millilitre. To allow the 

quantification of E. Coli as CFU/mL, a calibration curve correlating this with optical density at 

600 nm (OD600) was previously determined.  

Each well containing the diluted peptide or antibiotic was inoculated with the prepared diluted 

inoculum and the plate was covered and incubated for 20 hours at 37ºC. The absorbance was 

monitored at 600 nm in a microplate reader (SynergyMx, Biotek).  

Time-Kill Curve  

The bactericidal action of the functionalized peptide against E. coli, was determined by 

generating time-kill curves.  

Glass tubes containing different concentrations of either control, functionalized peptide or blank 

solutions, were inoculated with a suspension of E. coli at the final concentration of 

approximately 1×106 CFU/ml. The tubes were subsequently incubated at 37 ºC and viable 

counts were performed at different time points (0, 0.5, 1, 2, 3 and 5 hours) after peptide addition. 

To perform colony counts, aliquots of culture broth were taken after careful homogenization at 

the predefined time points, serially diluted in sterile PBS and spread in duplicates over Nutrient 

Agar plates. These were then incubated overnight at 37 ºC and colonies were counted. 
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In vitro assessment of Collagen expression  

Cell Culture 

Human Dermal Neonatal Fibroblasts (ZenBio, Inc) were grown in tissue culture flasks at 37 ºC 

in a 5% CO2 controlled atmosphere in Dulbecco’s modified Eagle’s medium (Gibco/BRL, 

Gaithersburg, MD) supplemented with 10% (v/v) fetal bovine serum (Gibco).  

Subculturing was performed by tripsinizing cultures with 0.25% Trypsin (Sigma-Aldrich), 

0.05% EDTA (Sigma-Aldrich).  Experiments were performed at passage 15. 

 

Fibroblasts were seeded at 2 × 105 cells/well in four 6-well culture plates and incubated for 

approximately 48 h at 37 ºC and 5% CO2. Upon reaching confluence the cells were subjected to 

a serum starvation period of 6 hours, by replacing the culture medium with DMEM without 

FBS. Following, culture medium was supplemented with 500 µM ascorbic acid (2-phospho-l-

ascorbic acid trisodium salt) and increasing Fmoc-PXG/NO and Fmoc-PXG concentrations [0, 

5, 10, 20, 50 and 100] µM. The culture plates were then incubated at 37 ºC in a 5% CO2 

controlled atmosphere for a period of 23 hours.  

Functionalization of Fmoc-PXG 

A 100 µM aqueous solution of Fmoc-PXG was reacted with NO gas (50% in nitrogen) for 

approximately 18 hours in a closed reaction vessel as previously described.  

Collagen quantification (Sircol assay) 

Collagen released into the cell culture medium 

Collagen was assessed by Sircol assay (Biocolor) according to instructions provided by the 

manufacturer, with the exception of the Isolation and Concentration step, which was replaced 

by an improved procedure recently published and tested in the laboratory as described in the 

appendix section.[202] 

Accordingly, 1 ml of Sircol reagent was added to 100 µl of sample volume and left reacting in a 

shaker for 30 min at room temperature. The collagen-dye complex precipitate was deposited at 

the bottom of the microcentrifuge tube by centrifugation and the solution drained. The 

precipitate was then carefully washed to remove unbound dye from the surface of the pellet as 

well as from the interior surface of the microcentrifuge tube. After solution centrifugation and 

drainage, the precipitate was dissolved in 250 µl alkali reagent by applying vigorous mixing.  
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A 200 µl volume of each sample was transferred to individual wells on a 96-well microplate and 

absorbance was read at 540 nm in a microplate reader (Synergy MX, Biotek). Collagen 

concentrations were determined using standards and a calibration curve. 

Collagen extracted from the extracellular matrix  

When measuring collagen deposited onto the cell culture plastic surfaces, arising from the 

endogenously produced extracellular matrix, an extra step was required, involving overnight 

incubation of the sample in an acid-pepsin solution at 4ºC. Following this step, the previously 

described procedure was carried out. 

dsDNA quantification  (PicoGreen assay)  

DNA quantification was performed using the Quant-iT PicoGreen dsDNA kit (Molecular 

Probes). Upon binding of the PicoGReen reagent to dsDNA an increased fluorescence was 

observed, which could be correlated to the number of cells present in the sample.[203] 

Twenty-two hours following addition of components to the cells, the PicoGreen assay was 

performed according to manufacturer’s instructions. Lysis is accomplished by treatment with 

Triton X-100 1% after overnight freezing of cell plates. Lysed cells solutions were then added to 

each well in triplicate along with standard dsDNA solution to a 96-well microplate. PicoGreen 

working solution was introduced to each well, incubated in a light-protected environment at 

room temperature for 5 min. The fluorescence signal was detected using a fluorescent 

microplate reader (Synergy MX, Biotek) at 480 nm (excitation) and 520 nm (emission). 
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Results and Discussion 

Peptide Synthesis 

The resulting purified Fmoc-PXG and PXG peptides were characterized by RP-HPLC and ESI-

MS. Peptides were obtained with high purity, as measured by HPLC, although to a smaller 

degree in the case of PXG. Chromatograms of Fmoc-PXG and PXG are shown in Figure 38 and 

Figure 39, respectively, and their resulting mass spectra are shown in Figure 40 and Figure 41. 

 
Figure 38. Chromatogram of a purified Fmoc-PXG, resulting in a 99.7% HPLC purity. To perform these 

analyses, a 15 cm long C18 silica column was used with a linear gradient elution of 0 to 100% of 

acetonitrile in an aqueous solution with 0.05% TFA. Elution ran for 30 minutes at 1 ml.min-1 flow-rate, 

and detection was made at a wavelength of 220 nm. 

 
Figure 39. Chromatogram of a purified PXG, resulting in a 96.6% HPLC purity. To perform these 

analyses, a 15 cm long C18 silica column was used with a linear gradient elution of 0 to 100% of 

acetonitrile in an aqueous solution with 0.05% TFA. Elution ran for 30 minutes at 1 ml.min-1 flow-rate, 

and detection was made at a wavelength of 220 nm. 
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Figure 40. Mass spectrum of Fmoc-PXG obtained by electrospray ionization (positive mode), in a 

quadrupole ion trap mass spectrometer, confirming the molecular mass expected for Fmoc-PXG, detected 

as di- (P/2), tri- (P/3) and tetraprotonated (P/4) cationic adducts of the target peptide. 

 

 

 
Figure 41. Mass spectrum of PXG obtained by electrospray ionization, in a quadrupole ion trap mass 

spectrometer, confirming the molecular mass expected for PXG detected as di- (P/2), tri- (P/3), tetra- 

(P/4) and pentaprotonated (P/5) cationic adducts of the target peptide. 
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Gelation of antimicrobial peptide 

When sodium hydroxide solution was added to the peptide bonded to the Fmoc moiety (Fmoc-

PXG), an immediate phase transition was observed resulting in a translucent hydrogel. The self-

supporting ability of the hydrogel was verified by simply inverting the container and observing 

if there was any collapse of the formed hydrogel. Although this is an unelaborate protocol, it is 

one established methodology for confirming gelation.  

The peptide lacking the Fmoc aromatic group, PXG, did not suffer any transition or visible 

aggregation in the same conditions, resulting in a clear solution at all times. Both solutions were 

photographed and are displayed on Figure 42.  

Tilting the resulting solution of PXG, as depicted on the left of Figure 42, is enough to observe 

that no gelation was verified, while inverting the flask containing the Fmoc-PXG solution, on 

the right of Figure 42, clearly shows that the solution culminated with a self-standing hydrogel.  

 

 
Figure 42. Self-assembly of Fmoc-PXG leads to a self-standing translucent hydrogel, on the right, 

whereas PXG, under the same conditions results in no macroscopic signs of self-assembly and gel 

formation. 

 
Even though Pexiganan encompasses several hydrophobic amino acids, it is highly charged due 

to presence of nine lysines in its sequence. An illustration is depicted in Figure 43, representing 

the hydrophobic and polar character of the different amino acids that compose the peptide. 

  

 
Figure 43. Amino acid sequence of pexiganan schematically representing its relative hydrophobicites. 

Hydrophilic residues are highlighted on top (blue) and hydrophobic residues are represented on the 

bottom (orange) with longer rectangles characterizing the more hydrophobic residues. Dark orange 

depicts the aromatic group present, phenylalanine. 

KG I F L K A K K F GG K A F V K I L K KK

PXG  Fmoc- PXG  
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When in water, the amine groups in lysine side chains are protonated (pKa=10.5)[204] and 

electrostatic repulsions between the charged amines keep the peptide in an unstructured shape.  

We believe that Fmoc-PXG undergoes a phase transition when pH is increased to levels above 

the pKa of the ε-aminium group of Lys side chain, thereby screening the positive charges and 

subsequently allowing aromatic and hydrophobic intermolecular interactions to develop, 

macroscopically forming the observed hydrogel. 

Incorporation of NO donor moiety 

The standard curve was obtained by reacting glycine solutions, prepared in ultrapure water, with 

the ninhydrin reagent, as previously described. The obtained standard curve is linear for glycine 

concentrations ranging from 10 to 200 µM, as shown in Figure 44. From the linear regression it 

was possible to quantify the free amines. 

 

 
Figure 44. Calibration curve of the ninhydrin assay, obtained with glycine solutions at concentrations 

that ranged from 10 to 200 µM. Error bars are the result of three independent experiments. (R square 

equals 0.997). 

 

It should be mentioned that in order to perform the ninhydrin assay, a dilution of sample was 

always in place to allow the amine quantification values to remain within the linear region of the 

standard curve. When quantifying amines present in different concentrations of pexiganan 

solutions via ninhydrin assay, it was noticed that the proportionality between concentrations was 

accurate, but the absolute values presented a deviation from real number of amine molecules in 

the sample. Nonetheless, the ninhydrin method was used, given that its application was 

employed for comparison with the control (pre-reaction) sample and not as an absolute measure 

of amines. 
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Kinetics of NO Release 

A standard curve was obtained by reacting Griess Reagent with standard sodium nitrite 

solutions and measuring absorbance of reacted solution at 548 nm, such as previously detailed. 

A linear profile was obtained in concentrations ranging from 1 to 100 µM. The obtained 

calibration curve is represented in Figure 45. 

 

 
Figure 45. Calibration curve for nitric quantitation via Griess assay, obtained with sodium nitrite 

standard solutions at concentrations that ranged from 1 to 100 µM. Absorbance was measured at 

wavelength 548 nm. Error bars are the result of three independent experiments. (R square equals 0.997). 

 
Following reaction with NO, samples were freeze dried and dissolved in aqueous solution and 

Griess reagents, adjusting the peptide concentration according to predictions of NO release, so 

as to fit the linear profile. 

Fmoc-PXG/NO formation and NO quantification 

A 30 µM Fmoc-PXG solution was prepared in ultrapure water and reacted with NO gas 

according to the previously described procedure. Following a reaction period of 18 hours, 

aliquots of the resulting solution were collected in triplicates, alongside the control solution 

(Fmoc-PXG) and blank (ultrapure water). The samples were assessed for free amines through 

the ninhydrin assay just as previously described. The resulting absorbance of solutions was 

recorded at 570 nm and the number of primary amines determined through the standard curve 

previously obtained. Results can be seen in Table 4. 
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Table 4. Ninhydrin assay was performed on the solution resulting from the reaction of peptide with NO 

gas. Absorbance values, as well as the number of primary amine molecules calculated by the calibration 

curve are shown. 

Sample Absorbance at 570 nm # primary amine molecules 

Fmoc-PXG 0.231 ± 0.002 8 × 1015 

Fmoc-PXG/NO 0.092 ± 0.004 2 × 1016 

 

Even though the ninhydrin assay requires an elaborate procedure, the results present a good 

reproducibility. The conversion of primary amines resulted in 60% for the abovementioned 

reaction. 

Quantification of NO released from the obtained solution was quantified via Griess reaction 

assay. Blank (ultrapure water) and control (Fmoc-PXG) solutions were processed in the same 

way as the Fmoc-PXG/NO sample, according to the procedure described in the material and 

methods section.  

Absorbance was monitored at different time-points at 540 nm and results from blank and 

control were deducted from that of Fmoc-PXG/NO sample. The values of both control and 

blank were found to remain roughly constant throughout the course of the experiment. Since it 

was a lengthy experiment, the values were also adjusted for solution evaporation. The nitrite 

released from the sample was quantified and plotted as a function of time and may be examined 

in Figure 46.  

 

Figure 46. Cumulative nitrite release profile of a 100 µM Fmoc-PXG/NO solution quantified via Griess 

reaction assay. The solution was produced from reaction of a 30 µM Fmoc-PXG solution with NO(g) and 

resulted in a 60% functionalization.  
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Fmoc-PXG/NO slowly releases NO for a period that extends to over 15 days, with 50% of NO 

being released at around day 3 following its resuspension in ultrapure water. The slow kinetics 

of NO release that resulted from the functionalization of a 30 µM solution is quite promising for 

its application into a wound dressing, allowing a continuous and slow release of the agent. 

However, the maximum concentration of nitrite measured was around 70 µM, which is only 

about 6% of the theoretical value of NO that is to be expected from the conversion of amines.  

 

When a 400 µM Fmoc-PXG solution was reacted with NO, following the exact same protocol, a 

lower amine functionalization was achieved, only of about 14%. That could be a consequence of 

the higher peptide concentration that may possibly lead to the clustering of peptide in a way that 

decreases amine availability. However, the release profile observed in this case presented a 

pronounced initial burst, as can be seen in Figure 47. 

 

N
O
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Figure 47. Cumulative nitrite release profile of a 125 µM Fmoc-PXG/NO solution quantified via Griess 

reaction assay. The solution was produced from reaction of a 400 µM Fmoc-PXG solution with NO(g) 

and resulted in a 14% functionalization.  

 

Although the established methods in the literature for evaluation of NONOate incorporation in 

primary amines rely on the sequential analysis of the presence of primary amine through 

ninhydrin assay, followed by the quantification of nitrite anion released in solution via Griess 

assays, the striking differences that were attained between samples, have led us to the 

conclusion that a deeper characterization of the reaction product was of crucial importance. We 

performed several spectroscopic studies, which included mass spectrometry, UV and infrared 

spectroscopy, in an attempt to determine the structure of the reaction product.  
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The results of these analyses can be found in the appendix section and arise from studies that 

were undertaken throughout the course of the doctoral program period, in parallel with the 

biological assessments, in order to corroborate and support previous results. 

The absence of oxygen within the reactor is of outmost importance when reaction with NO is to 

take place. The reason for such restriction is that presence of oxygen would promote nitrite 

formation as a reaction by-product leading to artefacts in Griess reaction assay. The deleterious 

effects of nitrite formation, however, would not be limited to an overestimation of nitrites 

originating from the functionalized peptide. A side-reaction might also occur with the 

deamination of amines. Nitrite ions in solution may react with secondary amines to form N-

nitrosoamines and with primary amines leading to the replacement of amino group by a 

hydroxyl group or the formation of an alkene derivative.[205] Such deamination would also 

interfere with the quantification of primary amines in the ninhydrin reaction. The deamination 

would account for a decrease in free amine groups, thereby creating artefacts in the results. 

Despite our best efforts to maintain an oxygen free atmosphere within the reaction vessel, the 

presence of residual oxygen should still be considered, as our attempt to detect the 

diazeniumdiolate group in the reaction product was unsuccessful.  

Evaluation of antimicrobial properties 

As a preliminary examination of the antimicrobial activity of the peptide functionalized with the 

nitric oxide donor (Fmoc-PXG/NO) we decided to carry out a simple in vitro analysis against E. 

coli.  

The susceptibility assay performed was based on the broth microdilution test according to the 

clinical and laboratory standards institute (CLSI) recommendations.[201] 

Bacterial susceptibility was estimated by determination of the IC50 and IC90, defined as the 

concentration of a component required to produce 50 and 90% of bacterial growth inhibition, 

respectively.  

While IC50 and IC90 lend important static concentration values, time-kill curves can provide 

valuable information on the dynamic behaviour of microbial killing and growth as a function of 

time. Time-kill curves were assessed to get a first glimpse of the different killing pathways of 

the functionalized peptide (Fmoc-PXG/NO) compared to control peptide (Fmoc-PXG). 

Functionalization of Fmoc-PXG 

The extent of reaction was measured according to the ninhydrin assay resulting in 

approximately 44% functionalization of amines.  
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Susceptibility Assay 

Escherichia coli susceptibility to Fmoc-PXG and Fmoc-PXG/NO was tested by broth 

microdilution assay, following the procedure outlined by the CLSI and described previously. 

Dose response curves were generated from a single experiment and are shown in Figure 48. 

Another experiment was carried out and was in agreement with results presented hereby. 

 
Figure 48. Dose response curves were generated for Fmoc-PXG and Fmoc-PXG/NO from a single 

experiment. Each point results from the average of triplicate samples.    

Dose response curves point to an overall higher antimicrobial potency of Fmoc-PXG when 

compared to Fmoc-PXG/NO. The values of IC50 and IC90, calculated from the dose response 

curve nonlinear regression and shown in Table 5, confirm the previous observation. 

Table 5. IC50 and IC90 determined from the dose response curve nonlinear regression for Fmoc-PXG (R 

square 0.992) and Fmoc-PXG/NO (R square 0.943). 

Sample IC 90 (µµµµM) IC 50 (µµµµM) 

Fmoc-PXG 15 10 

Fmoc-PXG/NO 47 20 

 

Although the functionalization of the peptide with NO was expected to enhance its 

antimicrobial potency, the opposite effect was verified, with Fmoc-PXG/NO presenting IC50 and 

IC90 values substantially higher than those obtained for the unmodified peptide. This is an 

unexpected result, since the N-diazeniumdiolate group is known to release NO with the 

conservation of the peptide backbone. If that would be the case, one would expect the 

antimicrobial potency of Fmoc-PXG/NO to at least equal that of the unmodified peptide. 
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Time-Kill Curve 

The quantification of bactericidal action of Fmoc-PXG and Fmoc-PXG/NO is represented in 

time-kill curves for different concentrations and summarized in Figure 49. The results are the 

product of arithmetic average of duplicates. 

 

 
Figure 49. Time-Kill plots for different concentrations of peptide with filled and dashed lines 

representing Fmoc-PXG and Fmoc-PXG/NO data respectively. The grey squares represent the control. 

The time-kill curves generated, and shown in Figure 49, suggest that Fmoc-PXG follows a 

consistent and slow antimicrobial profile, whereas Fmoc-PXG/NO presents a sharp initial 

antimicrobial action, an effect that is rapidly reversed in bacteria exposed to the lower 

concentrations. In fact, appraisal of log reduction values, presented in Table 6 and Table 7 for 

concentrations 19 µM and 9 µM, respectively, are consistent with that observation.  

While Fmoc-PXG/NO presents greater bactericidal activity than control in the first time points 

for both concentrations, such effect is reversed 3 hours following incubation, for the lower 

concentration of Fmoc-PXG/NO. Such an increased bactericidal action may be the result of 

nitric oxide released from the functionalized peptide into the culture media to a level that is 

harmful to the bacteria. 
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Table 6. Log reductions of viable colonies treated with Fmoc-PXG or Fmoc-PXG/NO versus untreated 

bacteria colonies for peptides concentration 19 µM. 

Sample 1hr 2 hr 3 hr 5 hr 

Fmoc-PXG 1.8 2.6 5.0 9.1 

Fmoc-PXG/NO 3.9 4.1 7.3 9.1 

 

Table 7. Log reductions of viable colonies treated with Fmoc-PXG or Fmoc-PXG/NO versus untreated 

bacteria colonies for peptides concentration 9 µM. 

Sample 1hr 2 hr 3 hr 5 hr 

Fmoc-PXG 0.4 1.7 5.6 6.4 

Fmoc-PXG/NO 2.6 2.7 2.2 3.1 

 

In the case of control peptide (Fmoc-PXG), for both concentrations which stand above IC90 (19 

µM and 37 µM) complete bacteria killing was confirmed 5 hours following incubation. 

However, in the case of Fmoc-PXG/NO, the time-point of complete killing was found to be 

concentration dependent, with an accelerated action observed for higher concentrations. By 

increasing the concentration of Fmoc-PXG/NO by 2-fold, complete bacterial killing was 

verified in two hours rather than three.  

When speaking of absolute killing one should mention that this is a value which is restricted by 

the detection limit of the assay. This is determined as a function of the lower dilution of aliquot 

employed, which in the case of the points measured, was zero, in a 100 µl aliquot. In accordance, 

the minimum CFU that is possible to quantify by the test is 10 CFU/ml. 

Although the antimicrobial assays presented here do not characterize the complexity of an 

infected wound, these studies provide clues about the potential application of the newly 

developed Fmoc-PXG/NO.  

Further studies should include the measurement of nitric oxide released from the peptide into 

the bacterial growth media at the different time-points to allow a potential correlation with its 

bactericidal action. The results of such study should help corroborate or disprove our argument 

that the increased initial bactericidal activity is due to the action of NO. 
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In vitro assessment of Collagen expression  

Wound healing is a complex biological process that is initiated following tissue injury. The 

process involves a cascade of coordinated events that aim to restore both structural and 

functional integrity of damaged tissue. Different phases of wound healing may be recognized, 

including inflammation, proliferation and remodelling. [208] Collagen deposition by fibroblasts 

is particularly relevant within the proliferative phase when it replaces the provisional fibrin 

matrix, providing greater strength to the wound. 

Nitric oxide appears to play an important role in wound repair by contributing to angiogenesis, 

inflammation, cell proliferation, matrix deposition and remodelling.[157] It has been previously 

observed that impaired healing wounds, such as diabetic wounds, feature a simultaneous 

decrease of collagen deposition and wound NO synthesis. [162] The positive regulatory role of 

NO in wound repair has been further demonstrated by inhibiting NOS in mice, which revealed a 

decrease in collagen accumulation in wounds. [209] Another ground-breaking work compared 

wound closure in iNOS knockout mice with wildtype animals, resulting in delay on wound 

closure in the knockout mice.[159] In addition, several studies have shown improved wound 

healing when resorting to the topical delivery of exogenous NO. [164, 166, 210-213] 

Herein, we investigate whether Fmoc-PXG/NO contributes to an increase in collagen 

accumulation in fibroblasts. To that end, human dermal fibroblasts were cultured in the presence 

or absence of Fmoc-PXG/NO followed by the quantification of collagen deposition. 

The experimental design here employed was based on the work by Witte and colleges, who 

studied the NO donor SNAP as an enhancer of collagen production.[214] In order to adjust the 

protocol to our own experimental settings, SNAP was primarily used to replicate the published 

data using a different collagen quantification method. Results of the aforementioned study may 

be found on appendices section. The accumulation of collagen has been quantitatively 

monitored by the colorimetric method of Sircol, whose optimization is described on the 

appendices section. 

Functionalization of Fmoc-PXG 

The extent of reaction was measured according to the ninhydrin assay, resulting in 

approximately 10% functionalization of amines. The Griess assay measured a maximum release 

of 168 µM NO2
-/100 µM Fmoc-PXG/NO. 
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Collagen quantification (Sircol assay) 

Fibroblast confluence was achieved at approximately 48 hours following incubation.  

Microscopic examination, approximately 23 hours following the addition of the different 

components, showed no visible morphological changes at the concentrations hereby considered. 

Collagen released into the culture media was quantified via Sircol assay and DNA measured 

through Picogreen assay, as described previously. Results are depicted on Figure 50. 

 

 

Figure 50. Collagen accumulated in the culture medium as a function of NO donor concentration. 

Collagen is graphed in blue columns and DNA in orange triangles at each concentration. Standard 

deviations are represented in bars and results from three independent experiments. 

 

A primary appraisal of the increasing amounts of collagen quantified from samples treated with 

progressively higher concentrations of NO donor, suggests a positive correlation between 

collagen production associated with fibroblast exposure to NO donor. 

Results of PicoGreen assay are shown in orange in Figure 50 and indicate that NO donor 

produces no significantly negative outcome on cell number, up to a concentration of 20 µM, 

above which the impact is quite expressive (data not shown). These results are consistent with 

microscopic observations, in which some cell detachment can be observed for concentrations 

above 50 µM. This was not unexpected since exposure of dermal fibroblasts to the NO donor 

SNAP, at concentrations above 100 µM, resulted in the significant decrease on the number of 

viable cells.[214]  
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Considering the results of the Griess analysis previously presented, wherein a release of 168 µM 

of NO2
- per 100 µM Fmoc-PXG/NO was attained, then accordingly, a 50 µM Fmoc-PXG/NO 

sample is expected to release around half of that value, 84 µM. This is in close proximity to the 

abovementioned threshold that other authors attained for SNAP.[214]  In a different study, in 

vitro cytotoxic tests of fibroblasts incubated with an NO-releasing zeolite, revealed that only 

one third of the fibroblasts were viable after a 24h exposure to the NO-zeolite.[215] In this 

particular study, as far as we know, only one concentration was tested, thus, precluding the 

evaluation of a threshold value.  

In parallel to the decrease of cell viability, also a decrease in collagen was verified for 

concentrations above 50 µM (data not shown).  

In order to rule out possible cross reaction of the peptide/NO adduct with the Sirius Red dye, 

Fmoc-PXG and Fmoc-PXG/NO (100 µM) samples were processed in accordance to the 

previously described Sircol protocol. The results of such study are presented in Figure 51. 

  

Figure 51. Fmoc-PXG and Fmoc-PXG/NO (100 µM) samples were processed according to the Sircol 

protocol and are shown in the first two columns, respectively. For comparison, a third column is shown, 

representing the result of collagen assessment by Sircol assay, of culture medium of fibroblasts incubated 

with a 100 µM Fmoc-PXG solution. 

Sirius Red is a strongly acidic azo dye containing six sulfonic groups which react with the basic 

groups of collagen molecules.[216] The high signal in the first column of Figure 51 is evidence 

to the affinity of Sirius Red dye with Fmoc-PXG, which may be explained by the high content 

of basic groups in the peptide. The significantly lower signal obtained for Fmoc-PXG/NO, 

whose basic residues are no longer available due to their functionalization, supports this 

hypothesis. 
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However, employing the same procedure for measuring collagen present in the culture medium 

of fibroblasts upon incubation with Fmoc-PXG (100 µM) for approximately 23 h, results in a 

drop in signal of about 14 times, when compared to control, as shown in the last column of 

Figure 51. Moreover, when examining the values of collagen present in the culture medium of 

fibroblasts incubated with different concentrations of Fmoc-PXG (10, 50 and 100 µM), no 

concentration dependence is observed, as presented in Figure 52. 

 
Figure 52. Collagen assessed by Sirius Red reaction. The left column represents the assessment of 

Collagen of a sample of 100 µM Fmoc-PXG whereas C10, C50 and C100 are the result of collagen 

quantification from culture medium samples of fibroblasts incubated with 10, 50 and 100 µM of Fmoc-

PXG, respectively. 

 

Peptide hydrolysis or its uptake by cells may have direct implication on the significantly 

different results in the signals before and after its incubation with fibroblasts. Given the abrupt 

reduction in the signal and the lack of concentration dependency, it is reasonable to assume that 

the chromogenic precipitation reaction of Sirius Red in incubated samples is mostly a result of 

collagen production and not peptide interference.  

Fmoc-PXG/NO, in turn, has a much lower affinity with the Sirius red dye, as shown in the 

second column of Figure 51, possibly a result of its amino group functionalization, just as 

previously mentioned. Supposing that for the same incubation period, a similar maximum 

theoretical ratio of degradation or cell uptake is achieved, the interference resulting from the 

functionalized peptide would be of the same order of magnitude as the standard deviation (± 0.2 

µg), whence, its interference may be considered negligible. This hypothesis should, nonetheless, 

be corroborated by employing other collagen quantification methods as well as by determining 

degradation of the peptide within the timeframe of incubation period.  
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Acid hydrolysis followed by colorimetric hydroxyproline assays, immunoassays and collagen 

mRNA quantification are among the reliable and specific methods used for collagen 

quantification and could be used as alternatives to Sircol assay. 

Collagen deposited in the extracellular matrix exhibits a profile similar to the collagen released 

into the culture medium, as seen in Figure 53, with concentration dependence behaviour. 

Accounting for the fact that the quantification of collagen deposited in the ECM involves 

several washing steps, there is no interference of the peptide in the collagen quantification assay. 

This supports our previous hypothesis of low interference from the functionalized peptide in the 

Sircol assay, following incubation.  

The larger standard deviation observed is most likely a consequence of the highly laborious 

procedure that is required to process these samples. 

 

 

 

Figure 53. Collagen deposited onto the extracellular matrix versus NO donor concentration. Collagen is 

represented in light blue columns and DNA in orange triangles. Standard deviations are represented in 

bars and result from three independent measurements. 

Considering the previous arguments supporting the hypothesis of inconspicuous interference 

from the peptide in the Sircol assay as valid, an enhanced collagen accumulation by fibroblasts, 

when incubated with Fmoc-PXG/NO has been presented. In addition, the relation between 

collagen and Fmoc-PXG/NO is dose-dependent.  
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The regulatory role of NO on wound healing has been previously shown, either by 

pharmacological inhibition or gene deletion of NOS, which leads to impaired healing, or by 

improving wound repair via exogenous NO topical delivery.  

Several roles have been ascribed to NO in the wound healing mechanism, such as vasodilation, 

inflammation, angiogenesis through the increase expression of vascular endothelium growth 

factor [217] as well as enhancing collagen production. However, this is a highly concentration-

dependent mechanism, where both low levels as well as too high levels of NO present 

detrimental effects on wound repair, and on collagen deposition in particular. Recently, a study 

has shown that high levels of NO within the wound environment reduce wound collagen 

deposition, which is restored upon inhibition of NO generation. [218, 219] 

We have shown that the product of reaction of Fmoc-PXG with NO, produces a positive effect 

on collagen accumulation. However, to allow translation of NO releasing materials into clinical 

practice, the unification of studies with normalization of NO concentrations is imperative. 

Different measurement techniques produce distinct results which compromises the final 

application of these materials. This is particularly relevant when the active molecule displays 

antagonist biological responses as a function of concentration. Determination of thresholds for 

each of the desired function is crucial to allow incorporation of NO donor molecules into 

biomaterials.  
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Conclusions 

This study has describes the production of an antimicrobial hydrogel formed by self-assembly 

of the peptide pexiganan bonded at the N-terminal to the Fmoc group, triggered by a pH shift. 

The peptide, which was subsequently reacted with gaseous NO to allow the incorporation of an 

NO donor moiety (NONOate), proved to release NO in aqueous conditions.  

Susceptibility assays revealed an overall decrease in antimicrobial activity of Fmoc-PXG/NO, 

when compared to Fmoc-PXG. However, time kill-curves pointed to an initial increased 

bactericidal activity of the functionalized peptide, which was reversed with time. We believe 

that this effect may be a direct consequence of the release of NO, which is known to act as an 

antimicrobial agent. Optimization of reaction conditions may allow the increase of the level of 

functionalization of the peptide, which can further raise the antimicrobial potential of Fmoc-

PXG/NO. However, further studies are needed to confirm the correlation between the released 

NO and the observed bactericidal action. 

Collagen production by human dermal fibroblasts when incubated with Fmoc-PXG/NO was 

quantified, showing a dose-dependent increase in the presence of NO donor within a range of 0 

to 20 µM. 

Although additional experiments are still required to achieve the final goal of obtaining a 

hydrogel with optimized antimicrobial activity and wound healing properties, this work already 

constituted an essential step towards that end. 
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CHAPTER IV 

GENERAL CONCLUSIONS AND 

FUTURE PERSPECTIVES 
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The present PhD thesis explored peptide-based self-assembled materials while recognizing 

some of its potential applications.  

Some dipeptides crystals, particularly those composed of amino acids with hydrophobic 

residues, were found to result in an unusual crystal packing arrangement, forming 

nanotubes.[24] The unidimensional channels within these crystals are quite heterogeneous in 

size, with different dipeptides forming channels of different widths and inner surfaces that may 

be hydrophobic or hydrophilic. These dipeptide crystals have great potential for a number of 

applications, comprising those which are typical for the class of microporous materials, such as 

gas storage, separation and catalysis. Notably, several dipeptides belonging to the VA class, 

have been shown to present high CO2/CH4 and Ar/O2 adsorption selectivities.[31, 32] Although 

they now represent a class of highly attractive, environmentally friendly, microporous materials, 

its application is not limited to gas separation processes. In fact, their voids have been shown to 

function as reaction vessels for polymerization reactions.[220]  

Detailed studies of diffusion in these one dimensional channels may allow an optimization of its 

potential applications. Leucyl-Serine (LS) crystals, which possess a remarkable crystal packing, 

with hexagonal symmetry forming a 5.2 Å van der Waals diameter channel, are unique 

platforms to experimentally determine diffusivities in one dimensional channels. We have 

determined transport diffusivities of CO2, CH4, N2, O2, and Ar in LS channels and studied the 

influence of several parameters, such as crystal length, temperature, pore loading and molecular 

size of guest molecules. We showed that the mass transport in LS crystals is fast, with 

diffusivity values standing within the upper limit of zeolites. This could be a result of the low 

tortuosity in the channels, when compared to the complex matrix of voids within zeolites, as 

well as a consequence of the uniform chemical environment within the inner surface of the 

tubes, which are lined with leucine residues. Interestingly, no correlation between the size of 

guest molecules and diffusivities was found. As previously mentioned, dipeptide crystals 

belonging to the VA class have been reported to possess greater affinity to certain molecules, 

quantified by its adsorption selectivity. These results suggest that the interactions between host-

guest within the channels might play a role in diffusion mechanisms in nanotubes. Therefore, 

rather than simply functioning as a molecular sieve, the dipeptide crystal appear to able to 

distinguish between similarly sized guest species due to the interactions that occur between 

them. We found that there was some propensity for obstruction to permeation with Ar and CH4, 

which we attributed to a pore blockage effect. Possible sources of pore blockages may include 

defects to the crystal framework, presence of amorphous materials or other species.  

The original work that we executed enabled the acquisition of quantitative values that provide a 

good contribution to the field of porous organic materials.  
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With the conclusion of the previous work a new interest, in higher complexity peptide self-

assembled material, arose.  

In Chapter III we presented the results of the development of a hydrogel formed by self-

assembly of an antimicrobial peptide. The peptide was later chemically modified to incorporate 

a nitric oxide donor molecule, known to enhance wound repair. Our goal was to develop an 

antimicrobial gel capable of accelerating wound healing. 

By exploiting our knowledge on the mechanisms that govern peptide self-assembly, we were 

able to attain a self-assembled antimicrobial peptide. Aromatic interactions have long been 

recognized to play a significant role in supramolecular chemistry.[142] Encourage by such 

evidence and the reports on the formation of hydrogelators, by incorporation of aromatic 

moieties to peptide molecules [146, 149, 150, 155], we decided to synthesize an aromatic rich 

antimicrobial peptide. We selected pexiganan, which contains 3 phenylalanine amino acids, and 

in addition we conjugated it to a Fmoc group in its N-terminus, increasing thereby the overall 

aromaticity of the molecule.  

When in aqueous solution (pH approximately 7), the amines in the lysine residues are expected 

to be mostly charged, causing electrostatic repulsion and the preservation of an unstructured 

shape of the peptide. When increasing the pH to levels close to the pKa of the ε-aminium group, 

we expect the deprotonation of amines belonging to the lysine residues to occur, therefore 

screening the positive charges, leading to the development of hydrophobic and aromatic 

interactions between the molecules. In fact, we showed that increasing the pH of the peptide 

solution to values of around 11, resulted in a sol-gel transition. However, in its native form, i.e., 

without the attachment of the Fmoc group, pexiganan failed to generate a hydrogel in the same 

conditions. Attribution of the driving forces of self-assembly to the aromatic interactions is, 

however, an assumption made by deductive reasoning from the results of other studies. To fully 

comprehend the value of aromatic interactions in the self-assembly of Fmoc-PXG, studies 

should be undertaken. Measurement of fluorescence spectra of solution and gel could provide 

valuable information on this matter. 

The strategy for incorporation of a NO-donor molecule relied on the reaction of primary amines 

with gaseous NO to form the diazeniumdiolate functionality, by taking advantage of the amines 

present in the peptide sequence.  

Nitric oxide has been shown to be a highly effective antimicrobial agent with a broad-spectrum 

activity due to its inherent ability to inhibit growth and kill pathogens as well as by functioning 

as a potent immunostimulatory signalling molecule.[221] Several NO-releasing materials are 

under investigation for decreasing infections.[222] The antimicrobial properties of the newly 

formed compound were tested against E.coli, revealing that Fmoc-PXG/NO results in lower 

antimicrobial activity, when compared with control peptide (Fmoc-PXG). However, when 
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analysing time-kill curves an interesting behaviour was observed, with the functionalized 

peptide resulting in an enlarged effect on short time scales. This increased effect is, however, 

reversed after a short period of time. We hypothesize that the release of NO accounts for such 

an enhancement of antimicrobial effect. The quantification of NO within the culture medium, 

measured at the same time-points as the CFUs analysis, could enrich the discussion on the 

possible link between NO release and bactericidal effects observed. 

NO has been reported to improve wound healing, in particular by increasing fibroblast collagen 

synthesis. We quantified collagen production from human dermal fibroblasts in the presence or 

absence of Fmoc-PXG/NO, resulting in an overall increase in collagen accumulation in 

fibroblast incubated with Fmoc-PXG/NO, in a concentration-dependent fashion. 

The quantification of collagen was executed by Sircol assay, which is a relatively fast and 

simple colorimetric method. However, the results of our studies showed that control peptide 

(Fmoc-PXG) interacts with Sirius red dye, creating some constrains on the quantitative 

evaluation of the results from cell culture medium. Although complementary studies conducted 

to validate the method appeared to rule out the inference of the functionalized peptide in the 

Sircol assay, within the experimental setup, it still remains essential to apply other methods of 

quantification to confirm the abovementioned results. The analysis of the deposited collagen, in 

which the peptide is no longer considered an interferent, revealed the same positive 

concentration- dependant profile, supporting the previous qualitative results and conclusions. 

To allow translation of NO releasing materials into clinical practice, the unification of studies 

with normalization of NO concentrations is imperative. Different measurement techniques 

produce distinct results which compromises the final application of these materials. This is 

particularly relevant when the active molecule displays antagonist biological responses as a 

function of concentration. Determination of thresholds for each of the desired function is crucial 

to allow incorporation of NO donor molecules into biomaterials.  

Although several reports have successfully incorporated the NONOate moiety in primary 

amines, the results of our study point to a possible side reaction that may result in the 

deamination of lysines and lead us to erroneous conclusions. Several techniques were attempted 

to characterize the product of reaction without conclusive data. That may be a result of the labile 

nature of diazeniumdiolates arising from primary amines.  

A meticulous study of the reaction product with unquestionable results is absolutely necessary 

to advance into a more detailed analysis of its biological applications.  

In conclusion, peptide self-assembly has great potential for the fabrication of novel materials of 

diverse nature and applications that can span from areas such as gas separation or wound 

dressings.   
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APPENDIX A 

FMOC-PXG/NO CHARACTERIZATION 
 

The goal of this study consisted on the detailed characterization of the end product of reaction of 

Fmoc-PXG with gaseous NO, termed Fmoc-PXG/NO. Several spectroscopic methods were 

employed including UV, mass and FTIR. Regardless of the several techniques used, no 

conclusive data was retrieved. 

 

 UV-Vis Spectroscopy 

According to Hrabie and colleagues [175] the best method for NONOate characterization is UV 

spectroscopy. Accordingly, NONOates should present an absorption maximum at around 250 

nm. Slight shifts from that value are to be expected depending on the molecule and solvent 

conditions. Equivalent concentrations of the two components were analysed immediately after 

evacuation of the reaction chamber. Overlapping the absorbance spectra at UV wavelengths for 

both solutions resulted in Figure 54. 

 
Figure 54. UV Spectra of Fmoc-PXG prior its reaction with NO gas, filled line, and after reaction, 

dashed line. 

 

An increased absorption was indeed observed bellow 250 nm. Overall, the spectra present 

distinct profiles. 
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Mass Spectrometry 

Peptide solution alongside the reaction product with NO were analysed by electrospray 

ionisation mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization time-of-

flight mass spectrometry (MALDI-TOF MS).  

Mass spectra for both Fmoc-PXG and Fmoc-PXG/NO, obtained by electrospray ionization are 

shown in Figure 55 and Figure 56, respectively. 

 
Figure 55. Mass spectrum of Fmoc-PXG, prior to its reaction with NO gas, obtained by electrospray 

ionization (positive mode), in a quadrupole ion trap mass spectrometer. It confirms the molecular mass 

expected for Fmoc-PXG, detected as di- (P/2), tri- (P/3), tetra- (P/4), penta- (P/5) and hexaprotonated 

(P/6) cationic adducts of the target peptide. 

 
Figure 56. Mass spectrum of Fmoc-PXG following reaction with NO gas, abbreviated as Fmoc-

PXG/NO. Mass spectrum was obtained by electrospray ionization (positive mode), in a quadrupole ion 

trap mass spectrometer.  
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The base peak in both spectra has practically the same mass to charge ration (m/z), 675.87 and 

976.00, for Fmoc-PXG and Fmoc-PXG/NO, respectively. This value corresponds to the 

tetraprotonated cationic adduct of Fmoc-PXG. Summing up, ESI-MS analysis revealed no clear 

difference between the spectra of Fmoc-PXG and Fmoc-PXG/NO.  

Although ESI belongs to the soft ionization techniques, one might still speculate on the possible 

degradation of the NONOate group during the analysis due to its high labile nature. It is also 

possible that these samples require an extra caution in its preparation, limiting the amount of 

time in solution, to minimize the released of NO molecules and subsequent conversion to the 

original peptide. 

MALDI-TOF spectra of both Fmoc-PXG and Fmoc-PXG/NO are shown in Figure 57 and 

Figure 58, respectively. 

 
Figure 57. Mass spectrum of Fmoc-PXG obtained by matrix-assisted laser desorption/ionization 

(positive mode) in time-of-flight mass spectrometry. 

 
MALDI-TOF mass spectra, in Figure 57, reveals that the principal peak in the Fmoc-PXG 

solution corresponds to the mass expected for that component. The peak at 2847.166 may be the 

result of an unpredictable binding of an extra lysine to the peptide backbone.  
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Figure 58. Mass spectrum of Fmoc-PXG/NO obtained by matrix-assisted laser desorption/ionization 

(positive mode) in time-of-flight mass spectrometry. 

 
The peak base of the product of reaction (Fmoc-PXG/NO), shown in the spectrum of Figure 58, 

resulted in an eight mass unit higher when compared to control. As mentioned earlier, a side-

reaction might occur when nitrite ions are present in solution. They can react with primary 

amines, leading to the replacement of the amino group by a hydroxyl group or the formation of 

an alkene derivative. A possible explanation for the mass increase observed in the mass spectra 

of Fmoc-PXG/NO would be the replacement of NH2 by OH group. Each substitution results in a 

one mass unit increase (-NH2: 16, -OH: 17), meaning that the above value could indicate the 

replacement of 8 amino groups with hydroxyl groups. Since Fmoc-PXG accounts for 9 lysines, 

having NH2 groups, a complete conversion would imply a surplus of 9 mass units. However, 

such results might be indicative of a partial substitution.  

The formation of the NONOate moiety, on the other hand, would implicate a 59 mass unit 

increase, per amino molecule substitution, and thus, the functionalization of 2 amines would 

result in an m/z value of 2818 (i.e., 118 mass increase). A value of 2817.988 was recorded and 

could indicate the functionalization of 2 amines per peptide molecule.  

Considering that NO is released from the functionalized peptide into the solution, which is 

exposed to air, oxidation will take place forming nitrite ions. Such nitrite ions can subsequently 

lead to the deamination of lysine residues, substituting the amino group with a hydroxyl group. 

Conversely, deamination may occur when Fmoc-PXG/NO is solubilized and not necessarily as 

a side-reaction of the synthesis of Fmoc-PXG/NO. 

However, the above mentioned is only speculative analyses since no conclusive data was 

retrieved from the mass spectra. 
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Fourier Transform Infrared Spectroscopy (FTIR) in solid sample by KBr pellet  

The infrared spectra of Fmoc-PXG and Fmoc-PXG/NO is shown in Figure 59. 

Figure 59. Infrared spectra of Fmoc-PXG prior (in blue) and following (in red) reaction with NO gas. 

 

Table 8. Infrared absorption peaks for both Fmoc-PXG and Fmoc-PXG/NO. Both samples present the 

typical Amide I and Amide II bands, highlighted in light and dark blue, respectively.  

Fmoc-PXG Fmoc-PXG/NO 

Position / Wavenumber (cm-1) Intensity Position / Wavenumber (cm-1) Intensity 

423,10 0,619 427,84 0,385 

452,37 0,598 668,52 0,284 

723,37 0,491 825,36 0,145 

801,32 0,363 1160,32 0,148 

839,32 0,308 1384,29 1,000 

1136,35 0,575 1507,39 0,198 

1204,97 0,673 1540,62 0,259 

1457,52 0,232 1653,34 0,342 

1544,44 0,592 2927,63 0,222 

1654,67 1,000 3441,76 0,479 

2960,51 0,360 3648,49 0,218 

3300,14 0,659 3734,90 0,160 

  3801,29 0,142 

  3820,76 0,144 

  3838,43 0,144 
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Amide bond is apparently conserved in the reaction, with the preservation of its characteristic 

bands, Amide A, due to the N-H stretching vibration (3225 and 3280 cm-1), Amide I , which is 

the most intense absorption band in proteins and results essentially from the C=O stretching 

vibrations (1600 and 1700 cm-1) and Amide II (1510 and 1580 cm-1 region). [223] 

The conversion of primary amines to secondary amines may be inferred by presence of two 

bands with wavenumber ranging from 850 to 700 cm-1, representative of deformational 

vibration of NH2 in the original peptide and a one band within the same wavenumber range. 

[224] 

The two most significant differences between the two spectra consist on the loss of the two 

absorption bands at 1136,35 cm-1 (Intensity: 0,575) and 1204,97 cm-1 (Intensity: 0,673) and the 

presence of a new high intensity absorption band in Fmoc-PXG/NO at 1384,29 cm-1 (Intensity: 

1,000), accentuated in bold in Table 8. 

So far, we were not able to match the above mentioned absorption bands with any specific type 

of vibration. The 1384 cm-1 could be related to NO2 symmetrical stretching vibration, but if that 

was the case an asymmetrical vibration should also be observed.  

According to Hrabie and colleagues, the infrared spectra of N-bound diazeniumdiolates exhibits 

three characteristic bands, two of which may be attributed to N-O stretching (1225-1210 and 

1187-1155 cm-1) and one to N-N stretching (1131-1129 cm-1). [175] Although the above 

mentioned values refer to diazeniumdiolates obtained through secondary amines, it is expected 

that similar characteristic values would be obtained for N-diazeniumdiolated attained from 

primary amines. However, none of the bands can be identified in our reaction product. 

On the previously argued possibility of substitution of the amine moiety by a hydroxyl group, 

no infrared absorption characteristic of that group was observed either.  

Overall, no conclusive results were achieved through the evaluation of the infrared spectra, 

leaving the question of the definition of the product of reaction unanswered. 
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APPENDIX B 

OPTIMIZATION OF SIRCOL PROTOCOL 
Herein, a systematic study on the effects of different parameters on the overall collagen 

quantification via Sircol assay is presented, aiming at its optimization. 

Fibroblast Seeding Density Optimization for Collagen Quantification via Sircol assay 

The goal of this experiment was to optimize fibroblast density in order to quantify downstream 

production of collagen bypassing the Sircol Kit’s concentration and isolation step, which we 

found to negatively affect sensitivity and reproducibility of collagen quantitation. 

Method: 

Fibroblasts were seeded in triplicates at increasing densities (1.0×105, 1.5×105, 1.9×105 and 

2.0×105 cells/well) into two 6-well culture plates and incubated at 37 ºC, 5% CO2 for 

approximately 48 h. Upon achieving confluence, a 6 h starvation period was established by 

replacing the culture medium with DMEM in the absence of FBS. Subsequently, the medium 

was again replaced with DMEM supplemented with 500 µM ascorbic acid and incubated at 37 

ºC, 5% CO2 for 22h. Medium from each well was sampled for Sircol assessment following the 

protocol previously detailed. 

Results and discussion: 

The result of collagen quantified for the different cell densities is shown in Figure 60. 

            
Figure 60. Collagen quantified via Sircol assay for increasing fibroblast densities.  

Higher fibroblast seeding densities, just as expected, produce increasing amounts of collagen 

enabling greater sensitivity to the method. 
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Pepsin Digestion Protocol Optimization for Sircol Quantitation  

The goal of this experiment was to compare different pepsin digestion protocols in order to 

minimize experimental time.  

Method: 

Overnight digestion at 4 ºC was compared with 1 hour incubation other at 37ºC, but otherwise 

the protocol was kept unchanged. 

Results and discussion: 

Results of collagen assessed by Sircol assay, following two different pepsin digestion 

procedures is shown in Table 9. 

Table 9. Collagen quantified via Sircol assay through different pepsin digestion procedures. Values are 

the result of triplicate analysis. 

Collagen / µµµµg 

Pepsin 4ºC overnight Pepsin 37ºC, 1h 

0.57 ± 0.06 0.46 ± 0.08 

Although the collagen quantified is not significantly different, the overnight 4 ºC protocol 

resulted in slightly higher collagen values with lower standard deviations. Possibly, the 

increasing temperature resulted in a greater amount of collagen degradation. 

Using ultracentrifugation columns to concentrate samples  

The concentrations obtained previously were low, so we attempted to use ultracentrifugation 

columns with two different cut-off pore sizes, 10 and 30 kDa. The initial volume was 400 µl and 

the final volume was less than 100 µl.  

Table 10. Collagen quantified via Sircol assay using different ultracentrifugation columns. Values are the 

result of triplicate analysis. 

Collagen /µµµµg 

10 kDa 30 kDa 

1.6 ±  0.1 0.5 ± 0.2 

The results, presented in Table 10, point to a more efficient collagen concentration when using 

the 10 kDa ultracentrifugation columns.  

Conclusions: 

Seeding 2×105 cells/well, digesting proteins overnight at 4 ºC and concentrating with a 10 kDa 

ultracentrifugation column should result in optimized values.  
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APPENDIX C 

SNAP EFFECT IN FIBROBLASTS 

COLLAGEN SYNTHESIS 
 

Collagen Quantification with NO donor – SNAP 

Fibroblasts were seeded in triplicates (1.0×105cells/well) into two 6-well cell culture plates and 

incubated at 37ºC, 5% CO2 for approximately 48 h. Upon achieving confluence, a 6 h starvation 

period was established by replacing the culture medium with DMEM 0% FBS. Subsequently, 

the medium was again replaced with DMEM, in the presence or absence of 10% FBS, 

supplemented with 500 µM ascorbic acid and increasing concentrations of the NO donor SNAP 

(10, 50, 100, 500 and 1000 µM). Culture plates were then incubated at 37 ºC, 5% CO2 for 22h. 

Collagen, BCA and DNA were assessed. 

 

Results: 

 
Figure 61. Collagen produced by fibroblasts incubated with different concentrations of NO donor SNAP, 

in culture medium without FBS. 

 

 

0,E+00

1,E-02

2,E-02

3,E-02

4,E-02

5,E-02

0 10 50 100 500 1000

C
o

ll
a

g
e

n
 /

 D
N

A

SNAP / µµµµM

No FBS



www.manaraa.com

118 
 

 

Figure 62. Collagen produced by fibroblasts incubated with different concentrations of NO donor SNAP, 

in culture medium with 10% FBS. 

 

PicoGreen analysis confirmed the decrease in viable cells as the concentration of SNAP 

increased above 100 µM.  

Collagen quantified from samples containing 10% FBS via Sircol resulted in very variable 

values. The albumin in serum is known to form an insoluble film on the inside of most plastics 

to which Sirius red dye may absorb, leading to artefacts. 

Collagen quantified in samples without FBS present a similar profile to the reference article. 
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